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ABSTRACT: Representing logic in a hierarchy of Karnaugh maps, where the 

hierarchy can be collapsed for don’t care conditions, enables all transitions from all 

states for all input combinations to be specified, yet keeps the combinatorial 

explosion manageable. 

____________________________________________________________ 

 

 

Design automation must do more than just speed development.  It must also find 

errors in the early, inexpensive design phase and ensure that the final specification 

is correct.  The challenge is to do so with a large number of inputs or states.  This 

paper describes the Logic Design Tool, which provides these functions. 

 

The motivation behind design automation is well understood - find and stop human 

errors.  The unwritten goal is to make logic design as easy as a video game.  But 

design automation must do more than just speed development.  It must find errors 

early in the inexpensive design phase and ensure that the final specification is 

correct.   

 

LDT does this with a representation made of Karnaugh maps linked in a tree 

structure hierarchy.  Areas in the structure that do not have bearing on its operation 

can be ignored by being collapsed, so the size of the representation is reduced.    

 
 

Application.  An error in a project’s production phase is typically orders of 

magnitude more expensive to fix than finding that same error in the design phase.  

And because digital logic is now present everywhere, this expense can be manifest 

in time, money, litigation or even human life.   

 

Designing logic with more than four or five variables is, however, prone to error, 

because the specification may not cover all desired conditions or may include 

unwanted actions. 

 



Truth tables, Binary Decision Diagrams (BDD) and Karnaugh maps can show all 

conditions and actions, but are cumbersome and subject to combinatorial explosion. 

 

A correct design means it is complete and proper.  A complete description accounts 

for all the possible stimuli; a proper model is unambiguous and each condition only 

has one response.   

 

Digital logic typically suffers from three kinds of errors: holes, conflicts and being 

just plain wrong.  Holes occur when no response is specified for the input and state 

conditions.  Conflicts occur when multiple responses are specified for the same 

condition.  Being wrong occurs when a desired response is not generated for a given 

set of conditions.  One cause of these errors is the inability to visualize the effect of 

all combinations when more than four or five variables are required.   

 

Various methods with benefits and disadvantages are used to defined logic. 

 

Text is inexact and typically only covers apparent conditions.  Boolean equations 

are difficult to understand and reduce when the logic includes more than four or 

five input variables.  Truth tables do not show patterns that would be evident in a 

Karnaugh map.  Truth tables are also tedious and subject to combinatorial explosion 

of cases.  If, then, else statements, as would be found in software code, may have 

hidden or lost conditions that are easily overlooked.  Binary decision diagrams are 

bit oriented, so visualizing the relationship of a several output variables is difficult. 

State Charts are two dimensional and do not account for the combinations of inputs 

necessary for each transition.  They can quickly become spaghetti charts.  Entered 

variables used in conjuction with a Karnaugh map do show all conditions, but 

reducing the size of the map involves mathematical equations and techniques that 

can easily introduce human error. 

 

However, LDT can specify all transitions from all states for all input combinations 

and do so with a large number of inputs and states without mathematical equations.  

If no states are required, LDT can specify combinatorial logic. 

 

 

Statement of Need.  In a EE Times article from July, 1995, Stephen L. Wasson 

raised the need for hierarchical modeling of logic.  He outlined present methods of 

specifying logic such as compilable flowcharts, HDLs, and bubble diagrams, and 

then called for a future FSM generation tool.  He said: 

 



“Of course, all of these fine-grained manipulations should be done automatically, 

and some day they will be.  Bubble diagram tools are an excellent start, but they 

need to be expanded to provide hierarchical modeling to facilitate more complex, 

hierarchical state machines and to accommodate more rigorous next-state analysis.  

Designers should be able to push through bubble trees down to leaf nodes that 

contain interactive Karnaugh maps.  These maps should be automatically filled in 

from the initial next-state equation specifications, and all holes, conflicts, and else-

assumptions should be clearly indicated.  At this level, the designer should be able 

to perform map manipulations that automatically back-annotate the next-state 

equations.” 

 

The Logic Design Tool is a software executable that provides these functions.  

More importantly, it can do so in the presence of a large number of inputs and 

states.   

 

 

LDT Advantages.  LDT is based upon an underlying method which relates binary 

input variables to outputs and (in the case of sequential logic) next state variables 

through a hierarchy of Karnaugh maps. The method extends the number of 

variables that can be used to implement combinational logic, and increases the 

number of state transitions that can be practically included in sequential logic.  This 

method allows LDT to generate a control specification that is complete (all 

conditions are specified) and unambiguous (only one action is possible for any 

combination of variables).  All actions the logic will take, under all conditions, are 

specified without the need for mathematical relationships or logic equations, which 

are prone to human error.   

 

Because the specification is complete, certain analysis is possible, such as an 

exhaustive search for worst and best-case performance paths or reduction of logic 

minterms.  LDT handles the combinatorial explosion of variables by collapsing 

regions of the logic space where variables are don't cares. 

 

LDT is especially useful in applications where system behavior must be proven 

correct, such as fault tolerant or data secure logic.  At the option of the operator, 

LDT can perform reduction of specified logic and produce source files for 

automatic implementation of a state machine in hardware or software. 

 

LDT displays inputs, present states, next states and outputs in both graphical and 

Boolean format.  The graphical format presents a visual plot of a binary or Boolean 

equation and shows the behavior of the state machine under all conditions.  With 



multiple views of the specification, design errors are less likely.  Where the state 

machine is to be implemented with Boolean logic, the number of minterms can be 

reduced.  Reduction in logic can result in less complex, more reliable, and cheaper 

systems with faster execution.   

 

Although LDT can easily specify simple systems, it is of most benefit to developers 

of software or hardware that is logic intensive, has many modes, many sequences of 

operation, or where operation must be very fast.  It can reduce the specification to a 

sum of product output for fewer gate delay hardware implementation.  Multiple 

simple systems can sometimes be incorporated into a single larger system with the 

benefit of lower overall system cost and complexity.  LDT makes this incorporation 

easier (and in some cases possible) due to its ability to manage a larger number of 

input variables and states.   

 

LDT will aid the user in specifying system behavior under differing conditions for 

both synchronous and asynchronous processes.  Since all actions of the state 

machine are known under all conditions, and generation of the implementation is 

via a known algorithm, LDT is useful in applications where the behavior of the 

system must be proven correct, such as highly reliable, fault tolerant or secure data 

systems.  This is in comparison to software built with nested if-then-else structures, 

where system modes are not as easily viewed.  

 

If software execution speed of an algorithm is important, the state machine can be 

implemented with a software array, such that the steps for execution are simply a 

single memory lookup and decode.  This becomes useful in software systems that 

are time critical, such as real-time operating systems.  

 

To prove the utility of the tool, both combinational and sequential control logic of 

some LDT options have been implemented with state machines and combinational 

logic generated by LDT itself.   

 

Either hardware or software behavior can be specified with LDT, so that the 

decision to implement functions in hardware or software can be made after 

specification with LDT and according to throughput estimates generated by the 

tool.  Specification of the state machine during analysis is done at an abstract level, 

so it does not need to influence the ultimate design.   

 

LDT will generate software source code for C, Ada, Pascal, or 80386 assembly.  

LDT will also generate source files in VHDL.  

 



Within LDT, arbitrary inputs or output conditions can be labeled as don't cares in 

order to minimize control specifications. LDT graphics are very simple, but the 

simplicity does not detract from its utility.  LDT supports timing analysis whereas 

most other tools can not offer this option because the resulting specification is not 

complete. 

 

Most digital control systems using more than 4 or 5 variables will contain errors.  

Where LDT is used to examine that control, it is likely to find an error, find a case 

not considered, or reduce the logic further.  Discussions about a digital control 

system often include some "what-ifs", but all the other "what-if" cases are left 

unexamined.  LDT allows each case to be examined and discussed, separate from 

all other cases. 

 

 

Description.  Karnaugh Maps are a graphical representation of a truth table and are 

often used to descibe problems with a small number of variables.  (See figure 1)  

Karnaugh maps are used to visualize, specify and reduce a binary function because 

they give a straightforward way to see minterms in a function and to help the 

designer minimize them.  

 

 Karnaugh map fundamentals are taught in most standard references. An example is 

Thomas McCalla, Digital Logic and Computer Design: New York, Macmillan 

Publishing, 1992 

 

Karnaugh map displayed in figure 2 has nine input variables, and to be displayed, 

the map must be replicated again for h and again for i, in different directions.  But 

to do so, the map would overflow the display page.  

 

As shown, two dimensional Karnaugh map representation becomes cumbersome for 

large or complex functions.  (e.g. see column 1, lines 32 43 of U.S. Patent 

4,583,169; and Hoerner and Heilweil, Introduction to Boolean Algebra and Logic 

Design: New York, McGraw Hill, 1964, p.168). So there is a need for a method that 

can relate a larger number of variables. 

 

Entered variables can extend the map input size, but involve equations and steps 

that can easily introduce human error.  See “Engineering Digital Design” by 

Richard F. Tinder, Academic Press, San Diego, 2000, ISBN 0-12-691295-5, pp. 

158. 

 



LDT uses an alternate representation of logic as seen in figure 3.  It starts with a 

blackbox approach to the design.  Inputs, outputs and state bits are identified and 

then grouped into fields, where each field is displayed in one window at a time. (For 

combinatorial logic, there are no state bits and no state storage.)  At present, the 

maximum number of combinations LDT can display at a time is six, where 2**6 or 

64 combinations are shown in a map.   

 

In this example, the first field, FIELD_0, is the state bit field, which with two state 

bits will allow four states to be described.  If more states were needed, another bit 

could be added so that eight states could be used, or with four bits, 16 states, and so 

on.  The next field, FIELD_1, is an intermediate set of inputs, and the intermediate 

field will display 16 combinations as is shown in the next slide. FIELD_2 is the 

final leaf or transition field, which with 3 bits will have eight combinations 

displayed.  The desired transform output or next state bit condition is entered in the 

transition field. 

 

Output and next state equations are a function of the inputs.  The next state bit 

a_next is a function of a,b,c,d,e,f,g,h and I, as is also true of  b_next and the output 

variable x. 

 

Figure 4 is a transform made of the map hierarchy that relates a binary output 

variable to a set of binary input variables.  The transform’s input variables are 

grouped into the successive fields assigned in figure 3.  Each field is then given a 

map having cells which are each a combination of that field's variables.  A different 

field combination map is assigned to each successive field for each preceding field 

cell, until it reaches the last field cell of each cell of each preceding field.  This 

process forms a field cell chain associated with the last field cell and that 

combination of inputs.  Finally, binary values are assigned to all field cell chains 

according to the desired transform. 

 

LDT can relate a large number of inputs to output variables because only a part of 

the hierarchy, the Karnaugh map in that field, needs to be viewed at any one time.  

This visual hierarchy aids the design and enhances a user's understanding of the 

logic transforms.  This is especially true for transforms  involving large numbers of 

variables, partly because patterns are easily identified and compared in the map.  

 

LDT also insures all input combinations have been considered and that only one 

transform value has been assigned to each of the combinations (complete and 

unambiguous). 

 



Although the method used by LDT allows a large number of variables to be 

examined, the combinatorial explosion can still make the assignment of each 

combination unwieldy.   

 

To solve this problem, the number of combinations that are displayed can be 

reduced.  In some areas of the hierarchy, input variables are don't cares and have no 

bearing on the output values.  See figure 5.  So, to reduce the hierarchy size and the 

number of combinations that must be specified, LDT enables the display of only 

those inputs that do affect the output.  The identification of don’t care inputs allows 

the hierarchy in that region to be collapsed. 

 

In this example, the combination map of FIELD_1 related to FIELD_0’s 

combination a’b are all don’t cares.  That field is collapsed to a single combination 

cell in FIELD_1.  The three inputs in the map at the final field, FIELD_2, are not 

don’t cares, so all eight combination cells in that field must be displayed. 

 

 

Illustrative Examples.  Three examples are given to further illustrate the use and 

utility of LDT.   

 

While both SAFEMSL and SUREMSL examples have the same number of inputs, 

outputs and states, their behavior is very different. 

 

SAFEMSL is a hypothetical ballistic missile which must fire only when the correct 

sequence of commands is entered, otherwise it must halt.  If a hardware failure 

should occur, the system must fail in a safe or halted state.  Inputs presented to the 

controller must follow a given enforced sequence of combinations or else the 

system will halt in an invalid state. 

 

SUREMSL is a hypothetical tactical missile controller that is only enabled when a 

jet is in a dogfight. The controller must fail active, so that if a hardware failure 

occurs, the missile will fire, even if a missed target is likely.  The system has a 

preferred sequence of input conbinations that cause the missile to fire, but a number 

of other sequences are allowed. 

 

CPLXMSL is a actual controller for a fielded battleship defense missile.  It is 

shown here briefly, but explained in detail in the user manual. 

 

 



SAFEMSL Example.  In figure 6, SAFEMSL inputs are grouped in two fields, 

FIELD_0, which defines the four present states, and FIELD_1, which specifies the 

next state transitions for each of the 16 combinations of inputs.  SAFEMSL present 

states are listed in the 4-combination state map of FIELD_0.  The SAFEMSL 

controller’s desired behavior, shown on the enforced path, is restricted by the four 

16-combination transition maps in FIELD_1 above the state map of FIELD_0.  The 

starting state is READY (0).  If FUEL (w) and COMPTR (x) become true, the 

machine will transition to AIM (1).   

 

FUEL must be true before CPMTR or else the machine will transition to the 

INVALD (2) state.  If COMPTR becomes true, FUEL must stay true or the machine 

will transiltion to INVALD.  The sequence of input combinations is also restricted 

in the AIM state such that AIMED must become true after FUEL, then COMPTR 

must become true, or the machine will transition to the INVALD state. 

 

Once again, BUTTON must come true after FUEL then COMPTR then AIMED to 

cause a missile to FIRE.  Otherwise, the machine will halt in the INVALD state.  

Enforcing this sequence would be difficult without the ability to see this path in the 

Karnaugh maps. 

 

In figure 15  are the next state equations for the SAFEMSL specification.  These 

equations include an error in the INVALD transition map.  This INVALD transition 

map has an erroneous transition in INVALD state 2 to FIRE state 3 at combination 

wx’y’z’.   

 

The error is not aparent from these equations, but can be easily identified in the 

slide as a ‘3’ surrounded by a group of ‘2’s. This case is meant to show the need for 

visualization of the logic. 

 

In figure 16 are the next state equations for the SAFEMSL specification shown in 

figure 6, however, in this case SAFEMSL has no ‘3’ transition error in the 

INVALD map.  Again, the equations do not easily show the difference between the 

specification with and without the error, and yet the error could have drastic 

consequences (Oops, we just took out Vladislovstok.  Sorry about that.)  

 

 

 

SUREMSL Example.  In figure 7, SUREMSL present states are, like SAFEMSL, 

listed in the 4-combination state map of FIELD_0.  The SUREMSL controller’s 

behavior, shown as the preferred path, is enabled by the four 16-combination 



transition maps shown above the state map in FIELD_1.  The starting state is 

READY (0). If FUEL (w) and COMPTR (x) become true in any order, the machine 

will transition to state AIM (1).   

 

Any time FUEL and COMPTR are both true, the machine will transition to the 

INVALD (2) state.  Unlike SAFEMSL, any sequence of their becoming true will 

cause the machine to transition to AIM.  The sequence of input combinations also 

does not affect the transition to the FIRE (3) state because anytime COMPTR, 

FUEL and AIMED are all true, the machine will transition to the FIRE state. 

 

Because the INVALD state will never be reached, all transitions in that state can be 

designated as don’t cares.  The don’t cares can be used at the discretion of the 

reduction algorithm to minimize the number of minterms needed to implement 

SUREMSL. 

 

 

Collapsed SUREMSL.  Transition patterns are repeated in the SUREMSL 

transition map, so the size of the transition maps can be reduced as follows. See 

figure 8.  

 

In the READY state, the transition pattern is repeated such that the FIRE input is a 

don’t care and its transition map is reduced to eight combinations.   

 

In the AIM map, FUEL, COMPTR and AIMED are don’t cares and the AIM 

transition map is reduced to two combinations of BUTTON.  All inputs in the 

INVALD transition map are don’t cares, and the map is reduced to one combination 

where all combinations are don’t cares.  All inputs to the FIRE state result in FIRE 

output, and the map can be reduced to one combination that stays in the FIRE state. 

 

The SUREMSL is then collapsed from a total of 64 transition map combinations to 

12, for much easier transition entry. 

 

 

CPLXMSL Example.  In figure 9, CPLXMSL indicates how involved real world 

problems can become.  CPLXMSL has 16 states and 29 transitions.  The number of 

transitions makes the state transition diagram into a spagetti chart that is difficult to 

follow. 

 



However, even though this controller is complex. LDT was able to implement and 

test the controller in 3 hours.  The actual implementation of this controller, done 

with normal coding, is claimed to have taken 2 months to write and install. 

 

Figure 10 is a state analysis of the CPLXMSL example, where dead and hanging 

states have been found.  Dead states have no transition to another state.  Hanging 

states have no transition to that state from any other state. 

 

No decision states, where there is an automatic transition to another state, can also 

be shown.   

 

Because the specification is complete, certain analysis is possible, such as an 

exhaustive search for worst and best-case performance paths or for reduction of 

logic minterms.  

 

Figure 11 shows the booean equation of next state bit A for the real controller 

CPLXMSL.   

 

This equation is intractable and would be difficult to correctly generate without a 

design aid such as LDT. 

 

 

Specification Entry, Views, Analysis and Implementation.   See figure 13.  The 

likelihood of finding design errors increases when mutliple means are available to 

enter the specification, view it, analyze it, and implement it.  Seeing the error from 

‘different angles’ gives more opportunity to recognize and fix the error before the 

error becomes latent in the target system.  Also, rather than entering each transition 

in each individual combination in the transition map, the transitions can be 

specifiied via a Boolean equation that describes when the present state should 

transition to the given next state.  This alternate entry eases the specification 

burden.  For even less rigor and faster entry, the output bit equations can be 

specified at the next state and output bit level, then viewed.  Don’t cares and a 

collapsable hierarchy can also reduce entry effort.  

 

The final specification can be stepped through states with an interactive debugger.  

It can also be shown as a state transition diagram or as a truth table.  Analysis can 

be used to verify that only the intended dead, hanging and no-decision states are 

present.  The logic reduction report can show that reduction was as expected and the 

result matches the required behavior. 

 



LDT generates a variety of software and hardware source code and code drivers in 

several types of implementations.  The choices enable the specification to be made 

at an abstract level without tying the design to a particular implementation in 

hardware or software. 

 

 

Range of Rigor.  There are several ways to enter a specification into LDT.  Each 

insures a higher degree of certainty that each condition was examined. This ranges 

from single entry for each combination, where there are no defaults and each entry 

must be actively specified, to entry with a next state bit level boolean equation, 

where only the result is viewed. 

 

So the entry method should be chosen based upon the certainty of correctness that is 

required for a particular project.   

 

 

Conclusion.  LDT can specify all transitions from all states for all input 

combinations. 

 

Because of LDT’s higher degree of rigor, and its additional visibility into the 

specification, it increases the chance of finding logic faults early in the inexpensive 

design phase. 

 

Specifications are debugged interactively and implementation is automated, 

reducing the chance for human error and speeding development time. 

 

The amount of rigor and the size of collapsible don’t care space is user selectable 

and can be tailored to meet system needs. 

 

LDT has many options that make it a valuable fit for a broad set of applications. 

 

 

 



 
Figure 1 – Karnaugh Map Example. 
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Figure 2 – Karnaugh Map Larger Than Display Area. 
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Figure 3 – Sequential Logic Transform and Field Definition.
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Figure 4 – Karnaugh Map Hierarchy with Example Functions.

KARNAUGH MAP HIERARCHY 

FIELD_0 

FIELD_1 

FIELD_2 

x = f(a,b,c,d,e,f,g,h,i) 
 
x = a’b 
{c’d’efghi+c’d’ef’[g’h’i+ghi]+c’def’[g’hi’+ghi]} 



 

 

 

Figure 5 – Hierarchy Collapsed in FIELD_1 of a’b for All FIELD_1 Variables. 
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Figure 6 – SAFEMSL Example. 
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Figure 7 – SUREMSL Example.
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Figure 8 – SUREMSL Collapsed from 64 to 12 Entries via Don’t Cares.
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FIELD_1 

A’ := A + B + w*x*/z + w*x*y 
B’ := B + A*z 
FIRE := B   

VARIABLE DEFINITION 

STATE_BIT_0 = A 
STATE_BIT_1 = B 
             FUEL = w 
        COMPTR= x 
           AIMED = y 
        BUTTON = z 
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Figure 9 – CPLXMSL Example. 
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Figure 10 – CPLXMSL State Analysis Report.

Report of search for states which are  
   hanging (no states transition to this state) or  
   dead end (no states transition from this state).  
 
State number 10 named State10 is hanging. 
State number 10 named State10 is a dead end state. 
State number 11 named State11 is hanging. 
State number 11 named State11 is a dead end state. 
State number 13 named State13 is hanging. 
State number 13 named State13 is a dead end state. 
State number 14 named State14 is hanging. 
State number 14 named State14 is a dead end state. 
State number 15 named State15 is a dead end state. 

CPLXMSL STATE MACHINE EXAMPLE 
 Next State Analysis 



 

 

 

 

Figure 11- Intractable Equation For CPLXMSL State Bit. 

CPLXMSL STATE MACHINE EXAMPLE 
 Next State Equation for Least Significant State Bit 

A' := (

A and then B and then not D and then not u and then not v and then 

not w and then not x and then not y )  

 or else (A and then C and then not D and then not u and then not v 

and then not w and then not x and then not y )  

 or else (B and then C and then not D and then not u and then not v 

and then not w and then not x and then not y )  

 or else (A and then not B and then not C and then D and then not x ) 

 or else (A and then B and then C and then not u and then not v and 

then not w and then not x and then not y )  

 or else (A and then not B and then C and then not D )  

 or else (A and then B and then C and then D )  

 or else (not A and then not B and then not D and then not u and then 

v )  

 or else (not A and then not B and then C and then not u and then v ) 

 or else (not A and then not C and then not D and then not u and then 

not v and then w )  

 or else (B and then not C and then not D and then not u and then not 

v and then w )  

 or else (not B and then C and then not D and then not u and then w ) 

 or else (not B and then not C and then D and then not u and then not 

v and then w )  

 or else (not A and then not B and then not u and then not v and then 

w )  

 or else (A and then not B and then not C and then D and then u )  

 or else (A and then not B and then not C and then D and then v )  

 or else (A and then B and then not C and then not D and then not u 

and then not v and then not x ) ;



 

 

 

 

Figure 12 – LDT Unique Functions.

LDT CAPABILITIES NOT FOUND IN OTHER TOOLS 
 

- Specify logic that is complete and unambiguous without the use of equations. 
 

- Represent both combinatorial and sequential logic. 
 

- Find the worst and best case execution paths, accumulated time on given path. 
 

- Generate exhaustive set of test vectors for all paths. 
 

- Easily show a transition from many or all states to another single state. 
 

- Display a large (greater than 16) number of states and transitions on a  
    readable diagram without grouping substates. 
 

- Make the software implemented state machine or combinational logic table  
    driven so its behavior can be changed without recompilation of the code. 
 



 

 

Figure 13 – LDT Options That Can Reduce Latent Errors. 

Specification Entry Methods: 
 Single Entry, Output Bit Boolean, Transition Boolean, Default,  
 Next State, Don’t Care, Test Vector, Truth Table, espresso 
 
Alternate Views: 
 Truth Table, If-Then-Else, Case, STD, Timing Diagrams, Boolean 
 Equations, Karnaugh Map Patterns, Hierarchy  
 
Analysis: 
  Interactive Debugger, Dead, Hanging, No Decision States;  
                Worst, Best Case Execution Paths, Logic Reduction Report 
 
Source Code Output: 
 C, Pascal, Ada, Assembly, VHDL, espresso, with test drivers and 
 exhaustive test vector set 
 
Transform Implementations: 
 Boolean Equation, Software Array, If-then-else, Case 
 
Reverse Engineer: 
 VHDL, espresso 
 

USER SELECTIONS 



 

 

 

 

Figure 14 – Ease of Entry Versus Required Rigor 
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Figure 15 – SAFEMSL Next State Bit Equation with INVALD (2) State  

Transition to FIRE (3). 

SAFEMSL NEXT STATE EQUATION WITH 
ERRONEOUS   

STATE 2 TO STATE 3 TRANSITION 
 
State_bit_next(0) := ( 
not A and then B and then not w and then x and then not 
y and then not z )   
 or else (not B and then w and then x and then not y and 
then not z )   
 or else (A and then not B and then w and then x and 
then not z )   
 or else (A and then w and then x and then y and then z); 
 
State_bit_next(1) := ( 
A and then not x )   
 or else (B )   
 or else (A and then not w )   
 or else (not x and then y )   
 or else (not w and then y )   
 or else (not A and then y )   
 or else (z ); 
 

 



 

 
 

 

 

 

 

 

 

Figure 16 – SAFEMSL Next State Bit Equation with No INVALD (2)  

Transition to FIRE (3). 

 

 

 

 

 

 

SAFEMSL NEXT STATE EQUATION WITH NO 
ERROR 

 
State_bit_next(0) := ( 
not B and then w and then x and then not y and then not 
z )   
 or else (A and then not B and then w and then x and 
then not z )   
 or else (A and then w and then x and then y and then z); 
 
State_bit_next(1) := ( 
A and then not x )   
 or else (B )   
 or else (A and then not w )   
 or else (not x and then y )   
 or else (not w and then y )   
 or else (not A and then y )   
 or else (z) ;  

 


