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SUMMARY
The Logic Design Tool (LDT) is a graphical aid for developing digital control.  

LDT is based upon an underlying method which descibes all relationships of a set of binary input variables to a set of output variables through a tree structure hierarchy of Karnaugh maps.  The method extends the number of variables that can be used to implement combinational logic, and increases the number of state transitions that can be practically included in sequential logic.  This method allows LDT to generate a control specification that is complete (all conditions are specified) and unambiguous (only one action is possible for any combination of variables).  All actions the logic will take, under all conditions, are specified without the need for mathematical relationships or logic equations, which are prone to human error.  

Because the specification is complete, certain analysis is possible, such as an exhaustive search for worst and best-case performance paths or reduction of logic minterms.  LDT handles the combinatorial explosion of variables by collapsing regions of the logic space where variables are don't cares.  This capability to collapse regions is patented.

LDT is especially useful in applications where system behavior must be proven correct, such as fault tolerant and data secure logic.  At the option of the operator, LDT can perform reduction of specified logic and produce source files for automatic implementation of a state machine in hardware or software.

LDT offers: 1) aid in specifying and verifying state machine or combinational logic behavior, 2) automatic generation of source code with reduced target execution speed, 3) reduction of the number of system states to a smaller, more manageable set, 4) restriction of the transitions between states to only those specified by the operator (no 'sneak paths'), 5) performance analysis of target execution, and 6) computation of system reliability based upon the combinations of components needed for system success.  
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1.0 Application and need.

1.1 Motivation.

Software development includes considerable risk and expense. Much software is never delivered or is inadequate if delivered.  System specification often suffers from ill-defined or poorly tested logic.  Specification errors made in the initial design of a system become much more expensive to fix at the end of development.  

Software and system design typically contains human error.  Efforts to reduce human error in software development include computer aided software engineering (CASE) tools, strongly typed structured languages, and disciplined development procedures.  These methods add rigor to development and make software structures visible to the designer, but do not automate design and implementation.  These methods reduce the number of syntactal errors, but do not 'type out' logical errors that can be detected at the specification stage of development.

1.2 LDT Description.

The Logic Design Tool (LDT) builds combinational logic and sequential finite state machines and can automate their implementation in hardware or software.  LDT is based upon a method for describing the relationship between a set of binary input variables to a set of binary output variables.  This method reduces the possible errors that can be introduced during specification.  A detailed explanation of this method is given in APPENDIX A.

Finite state machines are control algorithms of digital software and hardware that direct a sequence of system modes or states (Figure 1.2A).  A state machine controls transitions between system states. Any digital system composed of all binary elements can be represented as combinational logic or as a sequential state machine.  Combinational logic differs from sequential state machines in that it has no memory, so system outputs are a direct result of inputs. (Figure 1.2B)

A sequential state machine contains memory (Figure 1.2C).  Outputs and the next state of memory are a function (transform) of both inputs and the present state of memory.  Examples of memory are devices that can maintain a binary state, such as a read/write memory location, hardware register, flip-flop, latched relay or light switch.  In a synchronous state machine, the state will only change upon a clock signal.  Asynchronous state machines may change states whenever the inputs change and require no clock.

          _________          _________

         |         | Trans1 |         |

         | State0  |------->| State1  |

         |_________|        |_________|

              |             /    |

        Trans3|      Trans4/     |Trans2    

          ____V____       /  ____V____

         |         |<-----  |         |

         | State2  |<-------|  State3 |

         |_________| Trans5 |_________|


 Figure 1.2A A State Transition Diagram Example

                _______________

               |               |

               |               |

        Inputs |               | Outputs

       ------->|   Transform   |------->

       ------->|               |------->

       ------->|               |------->

               |_______________|

           Figure 1.2B Combinational Logic.

                    ________

  Clock ---------->|        |

                   | Memory |

           --------|        |<-------

          |        |________|        |

  Present |                          | Next

  State   |     _______________      | State

          |    |               |     |

           --->|               |-----  

        Inputs |               | Outputs

       ------->|   Transform   |------->

       ------->|               |------->

       ------->|               |------->

               |_______________|

            Figure 1.2C Sequential State Machine.

State machines have been found effective in hardware design because they reduce logic, execute quickly, and restrict operation of the hardware to only those actions specified by the designer.  State machines are also used during the analysis phase of several software development methodologies (Ward-Mellor, Hatley-Pirbhai) to specify system control at an abstract level.  However, during design and implementation, other control structures, such as if-then-else software structures, are typically chosen.  For a system of any complexity, errors are likely to be introduced during this change of control structure.  

LDT, however, can verify operation of the state machine before implementation and, if desired, can carry the state machine specified during analysis through design to its implementation in hardware or software.  This automatic implementation of the state machine reduces the inadvertent execution paths caused by human error or designer oversight.  

LDT also aids in initial specification of the state machine.  The LDT gives the user multiple views into his model, limits the user to only valid choices, restricts the action of the system to only those conditions the user specified, allows the user to test his model, and may enable him to change an implemented state machine's behavior without recompilation.  The testing time and effort of the implemented state machine is reduced since testing of the logical model is accomplished within, and integral to, the design tool via an interactive simulation of the specified state machine.  

LDT displays inputs, present states, next states and outputs in both graphical and Boolean format.  The graphical format presents a visual plot of a binary or Boolean equation and shows the behavior of the state machine under all conditions.  With multiple views of the specification, design errors are less likely.  Where the state machine is to be implemented with Boolean logic, the number of minterms can be reduced.  Reduction in logic can result in less complex, more reliable, and cheaper systems with faster execution.  

Although LDT can easily specify simple systems, it is of most benefit to developers of software or hardware that is logic intensive, has many modes, many sequences of operation, or where operation must be very fast.  Multiple simple systems can sometimes be incorporated into a single larger system with the benefit of lower overall system cost and complexity.  LDT makes this incorporation easier (and in some cases possible) due to its ability to manage a larger number of input variables and states.  

LDT will aid the user in specifying system behavior under differing conditions for both synchronous and asynchronous processes.  Since all actions of the state machine are known under all conditions, and generation of the implementation is via a known algorithm, LDT is useful in applications where the behavior of the system must be proven correct, such as highly reliable, fault tolerant or secure data systems.  This is in comparison to software built with nested if-then-else structures, where system modes are not as easily viewed. 

If software execution speed of an algorithm is important, the state machine can be implemented with a software array, such that the steps for execution are simply a single memory lookup and decode.  This becomes useful in software systems that are time critical, such as real-time operating systems. 

Because LDT takes into account the combination of inputs necessary for transition, the number of states are usually reduced in comparison to nested if-then-else software logic, or other state machine methods where each transition occurs on a single event.  By using LDT, a system may be restricted to a fewer number of states, and system complexity will be reduced because the combination of events that can occur is limited by the number of states.  Minimizing the number of subsystem states is important since the number of system modes (and possible errors) increases combinationally with the number of subsystem modes.  Thus, the use of state machines adds a degree of determinism to a system. 

To prove the utility of the tool, both combinational and sequential control logic of some LDT options have been implemented with state machines and combinational logic generated by LDT itself.  

Either hardware or software behavior can be specified with LDT, so that the decision to implement functions in hardware or software can be made after specification with LDT and according to throughput estimates generated by the tool.  Specification of the state machine during analysis need not influence the ultimate design.  LDT will generate software source code for Ada, Ada with in-line Intel i960 assembly, Pascal, C or 80386 assembly.  LDT will also generate source files for programmable hardware devices in VHDL and PALASM specification languages. 

1.3 Methods of Representing Logic.

A list of several means used to describe binary logic, with a comparison to LDT is given below. This discussion assumes the reader is familiar with the methods.

Text - Text is usually found in a concept of operation or a system specification. Text is easier for a non-technical or high level discussion of a system's operation, but is not exact and is prone to error.  'What if' questions typically cover only apparent cases, and do not cover all input conditions or unanticipated execution paths.

Boolean equations - Boolean equations are an exact specification of the system, but quickly become difficult to understand and reduce when logic includes more than five or six input variables.

Truth tables - Although truth tables cover all combinations of inputs, they do not show patterns that would be evident in a combination map and are subject to combinatorial explosion of cases.

If, then, else statements - Hidden or lost conditions can be easily overlooked in if, then, else statements.

Binary Decision Diagrams (BDD) - BDD specifications are complete and unambiguous, but are bit oriented.  Visualizing the whole relationship of a larger number of variables is difficult.

State transition diagrams (reference 2) - State transition diagrams, although very useful for a quick, easy-to-understand view of the state machine's operation, can become very busy "spaghetti charts" when representing more complex state machines.  An example would be where all states transition to a single state, such as during a reset to an idle state from all states or an asynchronous interrupt from all states.  State transition diagrams do not represent combinational logic, so a separate representation must be used for this purpose.

N2 diagrams  (Reference 7)- N2 charts are useful in that all transitions between all states are mapped, however, they do not account for the combinations of inputs necessary for those transitions.  N2 charts indicate transitions from any state to any other state, but N2 charts are limited to a single event for that transition.  N2 charts could make transitions to each state conditional upon a combination of inputs, but there is no guarantee that a combination used to specify that particular transition is not used in specifying another transition from that same state. Thus, there would be an overlap of cases and the specification would be ambiguous.  Also, there is no guarantee that all cases are covered.  The specification may be incomplete.

Figure 1.3 shows that a state machine specification can be both incomplete (for a possible combination of inputs, a transition is not specified) or ambiguous (more than one transition specified for the same combination of inputs).  Because of the method used in LDT, this error in specification cannot occur.

                         __

         ---------------|__|---------                    

        |             _________      |                 

        | Next State |         |     | Present State               

         ----------->|         |----------->                   

                A    |  State  |                    

                ---->|         |                   

                B    | Machine |                    

                ---->|         |                   

                     |_________|                   

          _________               _________

         |         | Trans1      |         |

         | State 0 |------------>| State 1 |

         |_________|             |_________|

            |                             

            |                           

            |                                  

     Trans2 |                        

          __V______                    

         |         |                    

         | State 2 |                   

         |_________|                   

        Trans1 = A


  Trans2 = B

       | A | B |  Condition

        -------

       | 0 | 0 |  Not included in trans 1 or 2.   

                  (Causes specification to be  

                   incomplete)

       | 0 | 1 |  Included in trans1.

       | 1 | 0 |  Included in trans2.

       | 1 | 1 |  Included in both trans 1 and 2. 

                  (Causes specification to be 

                   ambiguous)

        -------

Figure 1.3 Examples of Transitions That Are Incomplete and Ambiguous.

State transition matrices (reference 2) - State transition matrices assume only one event (equivalent to LDT input) will occur at the time of the transition. Like N2 diagrams, specification of that event, which is usually a combination of the inputs, could overlap another event specification, causing the specification to be ambiguous.

State event matrices (reference 2) - This representation is found in Hatley-Pirbhai and Ward-Mellor software development methodologies. But like N2, state event matrices do not account for the combinations of inputs necessary for transition. The state-event matrix used in these methods does allow the user to consider every possible transition from every possible state, but does not consider the possible combinations of events that might cause a transition to occur.  

State charts - State charts, used in Statemate, are not supported in Hatley-Pirbhai or Ward-Mellor methodologies.  They can specify sub states, but do not account for all input combinations.  State charts can describe a condition where a transition is possible from all states to a single state, but state charts can not describe a condition where all except one state (or all except a small subset) transition to a single state.

Logic design tool - LDT can specify all transitions for all input combinations and can be used to specify combinational logic where no states are needed for control.  

The utility of LDT is that all input combinations are accounted for and only one transition is assigned to any one input combination.  With LDT, combinational logic can be represented since it is simply a state machine with no states. 

The method used in LDT accounts for the combination of inputs necessary for a transition to occur.  State transition diagrams are an easily readable form for representing state machines, but for a state machine with many transitions to a single state, (such as a transition to reset state from all other states), the state transition diagram becomes difficult to draw and may be difficult to read. 

LDT provides the functions of Event Logic, State Transition Tables, and Action Logic used in Hatley-Pirbhai and Ward-Mellor methodologies with a single representation.  Process Activation Tables must show a sequence of processes by numbering the process execution order within the table.   Within LDT the sequence is inherent to the method format. Within Process Activation Tables, some combinations of events may be overlooked.  LDT enables all possibilities to be automatically shown yet easily specified.  Hatley-Pirbhai and Ward-Mellor represent combinational and sequential representations with two separate formats.  LDT uses the same format for both control structures.  

Within LDT arbitrary outputs can be assigned to don't care inputs in order to minimize control specifications. LDT graphics are very simple, but the simplicity does not detract from its utility. LDT supports timing analysis whereas most other tools can not offer this option because the resulting specification is not complete.

Most digital control systems using more than 4 or 5 variables will contain errors.  Where LDT is used to examine that control, it is likely to find an error, find a case not considered, or reduce the logic further.  Discussions about a digital control system often include some "what-ifs", but all the other "what-if" cases are left unexamined.  LDT allows each case to be examined and discussed, separate from all other cases.

LDT can represent more states in a single mapping than N2 charts.  With N2 charts, the specification can be ambiguous.  Ambiguity is not possible with LDT since each combination of inputs is assigned to only one next state.  

1.4 Competitive Products.

Some tools which use finite state machines are: CADRE Teamwork, IDE Software Through Pictures, Mark V Adagen, iLogix Statemate, AYECO Compeditor and ISDATA's State/view.  Xilinx, a company which manufactures field programmable arrays, has a graphical display of its combinational logic blocks as a user interface to its programmable logic products, but logic is displayed only at a bit level.  Futurenet can implement state machine design, but with logic equation input and at only one bit field level.  Statemate from iLogix deals with system design using a state machine approach, but is limited by the number of inputs and states that can be represented, and does not support presently accepted methodologies. 

AYECO's Compeditor is based upon a N2 chart showing transitions between all states, but does not account for the combinations of inputs.  Overlap of transition conditions are possible with the N2 chart. Compeditor can be used with state machines, but does not support generation of combinational logic.  

Like Statemate, LDT provides a graphical means for specifying a state machine, enables simulation of the operation of the state machine and can automatically generate source code for software or hardware implementation.  However, the following are some LDT features that are not thought possible or easily performed by Statemate:

1- find the worst and best case execution paths,

2- generate test vectors for all execution paths,

3- find the near minimal state machine implementation for speed or size or number of gates with a report of the rationale behind the reduction,

4- easily represent a transition from all states to another single state,

5- represent a large (greater than 16) number of states (that because of topology can not be assigned to a substate) and their transitions without generating an unreadable diagram,

6- represent combinational as well as sequential logic,

7- provide a means of representing logic that is guaranteed complete and unambiguous,

8- make the software implemented state machine or combinational logic invariant or table driven in that its behavior can be changed without recompilation of the code,

9- restrict state changes to adjacent (only 1 bit change in the word used to determine the state) transitions only.  This is useful for developing asynchromous code.

LDT is implemented on an IBM PC in the Pascal language, but a 'C' language version is in work.  LDT input and output functions are separated into "packages" to enable LDT to be more easily ported to other hosts.  LDT can be integrated with the tools presently used, such as Cadre Teamwork or IDE's Software Through Pictures. LDT could be added to the Teamwork tools since Teamwork provides software hooks for this purpose, and Teamwork makes its graphic databases available to user extensions such as LDT.  Control specifications declaring input, output and state variable names and types could be generated according to data dictionary entries.  Section 8.0 covers LDT and Hatley-Pirbhai in more detail.  

A key element in the design of LDT is that it must be user friendly.  Where possible, all commands require a single keystroke and response time is kept to a minimum.  An expanded help page is available at all menu levels.  Escape is always possible to the highest menu level.  A tutorial introduces the novice operator not only to logic and state machines, but also to the tool operation itself.  Operator entries are restricted to valid choices and any operator inputs which are out of bounds with previous operator entries generate an error prompt.  A detailed manual is provided with illustrative examples for each tool option.  Explanatory notes can be attached to the logic as a whole, as well as to each input, output and state.  These notes will be carried into any source code generated in the headers and source comments.  The operator is able to switch between tabular and boolean logic view in order to cross check his logic.

LDT will implement either Mealy (TBI) (outputs a function of inputs and present state) or Moore (outputs a function of present state only) state machines, with Moore machine being the default.  LDT can also restrict next state transitions to adjacent states only, where adjacent states are those states that can be reached by one bit change.  Adjacency is useful in state machines where the memory is not latched.

2.0 Tool Options.

2.1 Interactive Debugger.

An interactive simulator is included with the tool. This debugger tests the operation of the state machine in a manual single step or automatic test-vector-driven manner.  Files which specify a particular state machine can be saved and read for restoring or editing.  Conditions for transition, consisting of the combinations of inputs that will cause a particular transition upon a clock signal, can be displayed.  

2.2 Automatic Generation of Source Files; for Hardware or Software Implementation.

2.2.1 Software Source Code Generator.

LDT output is a compilable source file implemented with a software array or Boolean logic equations.  Source code can be specified for Ada, Pascal, C, VHDL (TBT) or PALASM (TBT).  The software state machine can be implemented in the source code with a software array, which is fast but requires larger amounts of memory, or with Boolean logic, which executes slower, but with close-to-minimal memory. Where the language allows, the source code is implemented in packages with defined interfaces. 

(TBT) LDT can generate Ada and in-line Intel i960(TM) source code for combinatorial logic.    

(TBI) LDT can generate Intel 8088 source code for state machine implementation.  This code is composed of basic assembly instructions found in most languages. Instructions used are those likely to be executed on a single clock cycle, such as load, store, test bit and jump on test. The number of Intel 8088 clock cycles needed to execute the state machine (for both software array implemented and Boolean logic implemented state machines) are given. This clock cycle number can aid in predicting the quickest execution time for other processors that include this basic instruction set. 

(TBI) The state and transitions maps will be able to be sent to an ASCII file or to source code headers at the option of the operator.

2.2.2 Hardware Logic Programming Files.

PALASM and VHDL files are industry standards for specifying the programming of hardware devices such as Field Programmable Logic Arrays, Sequencers and Gate Arrays.

LDT can generate a PALASM (TBT) or VHDL (TBT) source files for cases where the state machine is to be implemented with a programmable hardware logic device,     

2.2.3 Reduction of Logic; For Boolean Equation Implementation.

If a digital system can be characterized by a black box that generates outputs and next states according to its inputs and present states, then the question may be asked as to what the minimal implementation of this digital blackbox would be.  Finding the minimal or much reduced logic is the goal of logic reduction.  Logic reduction occurs automatically in LDT when a Boolean implementation of any source file is generated.  

2.2.3.1 Reduction Algorithm.

After the specification where the outputs and states for each set of inputs is entered by the operator, the logic to implement the 'black box transform' can be reduced. 

The logic reduction algorithm is given in section Appendix B.

2.2.3.2 Logic Reduction Audit Report.

In cases where logic reduction must be proven correct, the action for elimination of each variable in a minterm can be recorded in an output file.  The steps made during the reduction, and the rationale for those steps, is recorded in a human-readable file for later analysis.  The name of the file is the saved file name with file extension ".rpt".

2.3 Execution Time Estimates for Performance Analysis.

During the beginning of a software development project, timing relationships are typically asked for, but not provided.  LDT offers a means where execution times can be computed. If the state machine is to control or model a real-time system, it may be necessary to calculate the execution time the system needs to reach an end state from a given begin state.  

If the system passes through multiple states or transition paths before reaching the end state, then the execution time will vary.  However, where the execution time for all possible transitions is known, then the execution time for a particular state transition path would be the sum of all of the transition times for the path between the begin and end states.  Also, the worst and best (TBI) case execution times between any two begin and end states could be found by comparing the execution times for all the paths between those states. 

LDT provides this capability.  As a simple example, suppose the state machine represented by the Moore diagram below is modeling a system and the maximum time needed to reach state E, if it began in state A, is desired.  The possible paths are A,D,E which takes 3 milliseconds (2ms + 1 ms), A,C,E which 

takes 7 milliseconds, A,B,C,E which takes 10 milliseconds, A,C,D,E which takes 5 ms, and A,B,C,D,E which takes 8 milliseconds.  The worst case execution path is A,B,C,E at 10 milliseconds.  The best case execution path is A,C,D,E at 5 ms.

          _____     2ms         _____

         |     |-------------->|     |

         |  A  |               |  D  |-----

         |_____|----------     |_____|     |

            |             |       ^        |

            |             |    1ms|        |

         5ms|          3ms|   ----      1ms|

          __V__          _V__|           __V__

         |     |  1ms   |     |   4ms   |     |

         |  B  |------->|  C  |-------->|  E  |

         |_____|        |_____|         |_____|

Figure 2.3 Moore State Transition Diagram; w/Transition Times

LDT can find the worst case execution time between any series of state transitions.  After the operator has entered the time between each state transition, the operator can command an exhaustive search for all possible transition paths between the user specified begin and end states.  The path that results in the worst execution time can then be selected.  Since some paths may loop among the same states multiple times before reaching the final state, the operator is asked for a limit to the number of times any single state may be 'visited' or entered.  Also, since the end state may never be reached, the operator is asked for the maximum number of transitions to search before ending the search.

(TBI) The best case execution time will be available.

The execution time for any chosen sequence of states can also be computed by entering the state machine test mode, turning on the accumulated time display by entering a 't' at the state test menu, and sequencing through the desired path.  The accumulated execution time for that sequence will be displayed after each transition.

Throughput estimates can be recorded as a table of events or displayed as a timing diagram.  Timing diagrams can be generated by choosing the time line output while going to the state machine test.

(TBI) Via the exhaustive search, all execution loops will be identified with the maximum number of visits and transitions specified by the operator before the exhaustive search is started.

2.4 Reliability Tradeoffs (TBT). 

LDT is able to calculate the probability of success (or failure) of a system if given a description of the system success path and component reliabilities.  A system success path is the set of components necessary for system success.  This aspect of the LDT can be used in evaluating redundancy management schemes for fault tolerant systems.  This option of LDT is also useful in evaluating various architectures and their effect upon system reliability.  

(TBI) LDT presently uses a exponential probability distribution that is a function of operating time, but the ability to include other distributions according to user specified weights will be added.

2.5 Test for Dead or Hanging States.

LDT can automatically test for 'dead' states (states that have no next states specified), 'hanging' states (states where no previous state and combination of inputs will transition to that hanging state) and 'no-decision (TBI) states (states with only one exit transition).  Upon command, an exhaustive search is made, and any dead, hanging and no decision states are detected and listed for the operator's review. 

(TBI) LDT will find those collections of states that can be collapsed into a single substate.

(TBI) LDT will be able to call up, define and display substates of higher level parent states and lower level substates.

      _____                 _____           

     |     |               |     |           

     |  A  |-----------    |  D  |-----     

     |_____|           |   |_____|     |    

        |              |               |    

      __V__          __V__           __V__  

     |     |        |     |         |     |

     |  B  |------->|  C  |-------->|  E  |

     |_____|        |_____|         |_____|

        |                              ^

      __V__          _____           __|__  

     |     |        |     |         |     |

     |  F  |------->|  G  |---------|  H  |

     |_____|        |_____|         |_____|

        |                              ^ 

      __V__          _____             |  

     |     |        |     |            |

     |  I  |------->|  J  |------------

     |_____|        |_____|         

     A, D                      - Hanging states.

     C, D, E, G, H, I, J       - No decision states.

     E                         - Dead end states.

     F, G, H, I, J             - States that can be collapsed

                                 into a single substate.

     Figure 2.5 Examples of State Types; in a State Transition 

     Diagram.

2.6 Changes to State Machine Behavior; During Software Run Time Without Recompilation (TBI).

Since the state machine can be implemented with a software array that, if implemented in RAM or a table, can be modified during run time, it is possible to install a memory resident LDT which, without code recompilation, allows a change in the transitions between states.  By eliminating the need for recompilation, test and debug time can be reduced.

2.7 Tutorials and Help Menus.

LDT includes on-line help menus at each level.  A user manual is provided that includes a detailed description of illustrative examples. 

Several tutorials which instruct the operator in the theory and operation of state machines, logic reduction, Boolean logic and the LDT itself (TBI) are provided.  These tutorials employ programmed learning.  Programmed learning means that the tutorial is divided into sections with an interactive exercise at the end.  If the exercise is completed correctly, the tutorial jumps ahead to a section covering the next concept.  If the tutorial is not completed or is completed incorrectly, the tutorial branches to a more detailed explanation of the concept covered by that section.  Thus, the tutorials are geared to operators of varying degrees of experience.

(TBI) All help menus have reference to the related sections in the User Manual.

(TBI) All help menus are in an 'inverted pyramid' meaning that the most high level explanation is given first, then more detailed and careful information is given at the request of the operator.

2.7 Alternate Specification Entry Methods.

Transition from a present state to a next state can be specified for each combination of inputs, or can be specified by entering minterms of inputs that cause transition to the same state.  This minterm grouping is described by anding high, low or dont care values of the inputs.

3.0 Illustrative Examples.

This library of examples is intended to illustrate the operation of LDT. These files are included on the disk provided.  they will be displayed at the main menu after the 'l' option is entered.

3.1 Processor Examples.

3.1.1 Task Dispatcher/Scheduler. (TASKPR)

This example illustrates how the LDT can dispatch and schedule both periodic and asynchronous tasks within a single processor.  Three periodic tasks, A, B and C can be preempted by tasks D and E.  Task A occurs every 1 microsecond, B every 10 microseconds, C every 100 microseconds, and F executes as a background task when no other tasks are running, such as a built in test.  Task D and E are tied to external interrupts and will preempt A, B, C and F.  The descending order of task priority is: D, E, A, B, C, and F.  

3.1.2 Computation of Worst Case Execution Time. 

3.1.2.1 Task Priorities Example. (TASKPR)

This example uses the previous example, TASKPR, in showing how a timeline can be generated for that example.  With the maximum number of transitions equal to 99 and the maximum number of visits to any one state equal to 5, the worst case time to complete task C starting from task A, with preemption by tasks D, E, A and B, is 14 microseconds, where execution times are given for each transition of each task.

3.1.2.2  Worst Case Execution Time Example. (XTIME)

This is one of the test cases for the worst case execution time algorithm. A set of transitions, starting from state0, include path (Represented by Present_state:Input combination->Next state) 



0:0->4, 



4:0->12, 



12:0->8, 



8:0->9, 



9:0->11, 



11:0->10, 



10:0->14, 



14:0->15, 



15:1->13, 



13:1->5, 



5:0->7, 



7:1->6, .  

Another path is 



0:1->1, 



1:1->3, 



3:1->2, 



2:0->6. 

Yet another path is 



0:1->1, 



1:0->5, 



5:0->7, 



7:1->6. 

All transition times are set to 1.0. The worst case transition time from state0 to state6 is 12.0. 

3.1.3 Computation of Probability of Failure. (PROBF)

A self checking pair (FRC) greatly reduces the software burden associated with detecting and isolating a failed component and provides a hardware fault coverage of 100%.  However, because the failure of either of the processors will cause both to be declared failed, installing the FRC reduces the reliability of the system, and this reduction in reliability should be monitored.  The PROBF example computes the effect of reducing the reliability for an n+1 redundant system with four active and one fault tolerant processor.  

The number of components is assumed to be 5. Component input is entered by probability, not MTBF.

If the probability of success for a single processor is .995, then the probability of success of an FRC composed of two of those processors is .990.  Using these two numbers as component reliabilities for the n+1 system, (where any four healthy units can maintain system success), the probability of failure for the n+1 system with single processors becomes 2.47509E-04, while the probability of failure of the n+1 system composed of FRCs is 9.80145E-04.  Therefore, the use of FRCs makes the system four times more likely to fail, however, changes in reliability are not normally considered significant unless there is at least an order of magnitude difference in probability of failure.  Therefore, with this processor component reliability, the use of FRCs does not have a significant effect upon system reliability.

The reason for the use of the n+1 fault management scheme can also be shown through the tool by calculating separately the contributions to probability of system success of all cases where no failure has occurred (.9752), one failure has occurred (.0245) and where two failures have occurred (.000246), where the component probability of success (no FRC pair) is .995.  It can be seen that the contribution to probability of success for the two failures case is much smaller than the single failure case.

3.1.4 Graph Management. (GRAPH)

This example implements job processing with dependencies.  Five tasks are given with the dependencies shown below:

E depends upon completion of D and C. C depends upon completion of A and B. There are 4 states: C waiting on A and B (CWTAB), E waiting on C and D, (EWTCD), DONE and ERROR. ERROR occurs when a sequence is evident that doesn't make sense, such as CDONE while not ADONE or not BDONE.  There are 4 inputs: ADONE, BDONE, CDONE and DDONE.

      _____                 _____

     |     |  ADONE        |     | DDONE

     |  A  |----------     |  D  |-----

     |_____|          |    |_____|     |

                      |                |

      _____          _V____          __V__

     |     |  BDONE |     |  CDONE  |     |

     |  B  |------->|  C  |-------->|  E  |

     |_____|        |_____|         |_____|



Figure 3.1.4 Graph Management Example.

3.1.5 JAIWG 1149.1 Bus Simulation. (J1149)

The JAIWG 1149.1 bus is a test bus standard used to test ASICs and other LSI logic.

This example illustrates the test vector input and the timing diagram output of LDT's state machine simulator.  The bus implements the state machine shown in figure 3.1.5.  Test vectors which transition the state machine through all states are found in file J1149.vct. The generated output is given in file J1149.trc.

Figure 3.1.5 JAIWG 1149.1 Bus State Transition Diagram (J1149).

3.2 Missile Launchers.

Two examples of imaginary missile launchers show how the specification of a state machine can be entered and how state machine behavior can be changed by modifying only the transition specification.  

The examples are: sure missile launcher (file name SUREMSL), and safe missile launcher (file name SAFEMSL).  The safe missile launcher and sure missile launcher examples use the same number of inputs, outputs and states, but their behavior is made different due to their use in two extremely different applications:  the conditions for firing the SAFEMSL are severely restricted and must only be allowed to occur upon a correct sequence of events, while SUREMSL must be fired upon command whenever possible.  

The safe missile launcher is a strategic, offensive nuclear device that, in order to avoid the inadvertent start of a nuclear war, should be fired only under the proper conditions and upon the right sequence of events.  If that sequence is not followed, or the right inputs are not present in the right order, the missile firing sequence must be stopped, an error signaled, and the missile will stay in its silo.

The sure missile launcher is a tactical, defensive missile on a fighter aircraft, whose firing would only be a threat to another, probably hostile, aircraft.  In order to defend the pilot, an attempt to launch the missile must be made in all situations where the go button is pushed.  

Both state machines have four inputs: fuel present (FUEL), computer system ready (COMPTR), missile guidance aimed at target (AIMED), and go button pushed by operator to command launch of the missile (BUTTON).  Both state machines consist of four states.  They are: prepare the missile for firing (READY), acquire and lock the missile guidance onto the target (AIM), fire the missile at the target (FIRE), and an invalid state used to halt the process which is not likely to be entered at all (INVALD).

The third missile launcher (file name CMPLX) is a controller for an actual complex missile launcher whose behavior must be known under all conditions.  

3.2.1 Safe Missile Launcher. (SAFEMSL)

3.2.1.1 Steps Taken to Enter the SAFEMSL Specification.

Safemsl can be read into LDT by entering "f", then the file name "SAFEMSL".  LDT will then return to the main menu with the specification loaded.  However, as an example, the following section shows how SAFEMSL was initially entered:

1- Identify all desired output variables from the state machine. 

The number of desired outputs from the state machine SAFEMSL is one: FIRE. 

2- Determine the number of states needed during the entire operation of the state machine.  This will be, at a minimum, the number of unique combinations of output variables and  processes activated by the state machine at any one time. 

The number of unique combinations of processes and outputs activated at any one time is four: a GET_READY process activated with FIRE low, a GET_AIMED process activated with FIRE low, an HALT_AT_INVALID process activated with FIRE low, and a FIRE_MISSILE process activated with FIRE output variable high. 

3- Find the smallest power of two which, when two is raised to that power, is greater than the number of states needed.  Make the power equal to n.  Make the number of state machine states equal to 2**n. 

The smallest power of two that includes the 4 states in SUREMSL is 2 (2**N where N=2).  

Steps taken for the SAFEMSL example:

These parameters for SAFEMSL were entered into LDT by bringing up LDT from the floppy by typing A:LDT(CR), a carriage return at the copyright prompt, and an "O" at the Main Menu prompt. 

The number of inputs will be requested. The number of inputs is 4. 

The number of outputs will be requested.  The number of outputs is 1. 

The number of states will be requested.  The number of states is 4.  

After the state machine size (#inputs, #outputs, #states) is entered, LDT returns to the Next state menu. Other options have appeared that allow the operator to work edit test and save this sized state machine.  One option is to name inputs and outputs. This option was entered by hitting "I", then entering the names of the inputs, then the names of the outputs.  

4- Request LDT to draw a combination map whose number of combinations (cells of the combination map) equals the number of state machine states.  

Steps taken for the SAFEMSL example:

To ask LDT to draw the combination maps needed, the 'E' key was pressed for edit.  The state combination map for SAFEMSL is shown in figure 3.2.1a.  A combination map representing the state map was drawn. Each state was named by hitting the "N" key and entering the desired name of the state pointed to by the cursor, then moving the cursor and naming the next state.  State bit identifier indexes will appear and be highlighted as the cursor moves, indicating the value of the index for the combination pointed to by the cursor. The outputs were also displayed for as the cursor moved to each state. Outputs were set by hitting "P", and one by one entering the output value for that state. For SAFEMSL, output 0, named FIRE, the only output, is 0 except for the FIRE state, where it is 1.

5- Assign each of the unique combinations of outputs to one and only one combination map cells each of which represent a state.  

READY is assigned to state number 0, AIM to state 1, INVALD to state 2, and FIRE to state 3.

6- Mark all unused cells as invalid or don't care where don't care means that whether any of the state bits representing that cell is high or low has no effect on the operation of the state machine. 

SAFEMSL has no unused states.

7- Determine the number of inputs (variables) to the state machine. 

SAFEMSL has four inputs: fuel present (FUEL), computer system ready (COMPTR), missile guidance aimed at target (AIMED), and go button pushed by operator to command launch of the missile from its silo (BUTTON). These inputs were named in the main menu option.    

8- For each cell of the last index variable field state combination map, draw a corresponding input combination map containing all of the combinations of inputs.  If all the combinations of inputs cannot be mapped onto a single page (which is greater than five input variables), create another input combination map for each cell of the first input combination map. 

The last index variable field is just the first index variable field, which is the two state identifier bits, 0 and 1.  The corresponding combination maps for each state, which specify the transition for each combination of inputs, are shown in figures 3.2.1e through 3.2.1h.  Figure 3.2.1e corresponds to state 0 (READY), 3.2.1f to state1 (AIMED), 3.2.1g to state2 (INVALD) and 3.2.1h (FIRE).  

Figure 3.2.1c shows the expansion of the state combination map cell assigned to state number 3, named FIRE, where the state number is defined by the state identifier indexes of the map, to an input variable combination transition map. A and B are state identifier indexes that make up the index variable field. A is the least significant index.  W,X,Y and Z are input variables, where W is the least significant variable.

Steps taken for the SAFEMSL example:

To reach the transition map for a particular state of SAFEMSL, the "G" key was hit. The transition map appeared, with default values for all combinations of inputs set to the present state. 

9- In each of the last input combination map cells corresponding to each of the last state combination map cells, enter the desired transition between the present state for that cell to any other valid next state.  If that transition is a don't care, meaning that the transition will never happen or has no effect upon the desired operation of the state machine, mark this cell as a don't care. The information that this is a don't care can be used to reduce the size of the next state equation.

The transitions entered into each cell are shown in figures 3.2.1e through 3.2.1h.

Figure 3.2.1e shows the transition map for state 0 named READY. Here the missile is waiting for fuel to be pumped to its engines and for its computer to be powered up and to notify the silo command center that the computer is alive and passes its health checks.  

If BUTTON (Y) is ever true (equal to 1), or AIMED (Z) is ever true in this state, this is flagged as an error and the INVALD state is entered. Otherwise, the state machine will stay in this state unless both FUEL (W) and CMPTR (X) are true at the same time.

Figure 3.2.1f shows the transition map for state 1 named AIMED.  Here the missile is waiting for its computer to acquire and lock onto the desired target coordinates sent to the missile by the silo command center before being fired.

This state was entered because FUEL was loaded in the missile and the CMPTR was operational. If either of these capabilities should go false, then the missile may stay in its own silo with an armed warhead or fly to an undesirable location.  So in those cases, the missile is stopped by entering the INVALD state.  If FUEL and CMPTR stay true, and the missile's computer has given target coordinates (AIMED), then the missile controller will stay in AIMED until the launch command (BUTTON) is given, at which point it will go to FIRE.  If however, BUTTON is pushed before the missile is AIMED, then the missile will be halted (INVALD).

Figure 3.2.1h shows the transition map for the FIRE state. This state is only entered when all inputs are true and the state machine will only stay in this state if all inputs remain true.  It interprets any other combination of inputs as an error and transitions to INVALD in order to attempt a halt of missile launch.

Figure 3.2.1g is the transition map for the INVALD state.  This state halts all further actions of the missile and cannot be exited.

Steps taken for the SAFEMSL example:

Transitions were entered for each input combination by 1) hitting the number of the next state for that combination directly, 2) selecting the name of the next state for that combination "S", and 3) entering the name of the next state for that transition "A". A note was added explaining the reason for the transitions by hitting "N", then "O", then the note, then Esc (the Escape key). This was done for the transition map corresponding to each state. 

Return to the main menu was accomplished by hitting the Esc key twice. At this point the state machine test option was invoked by hitting "T", where the state map was shown with inputs to the left side of the screen, outputs to the left side of the screen and the state map in the middle. The cursor is located at the present state. State transitions were commanded by changing the inputs to the state machine by hitting "C", then entering the input combination to be presented to the state machine for this clock, then hitting Enter, to simulate the clock of the state machine storage (memory) device. The output, named fire, was verified to be a 1 only in state 3, named FIRE.

10- Find the next state equation for each state identifier bit (index). The next state of the state machine is defined by a combination of indexes output from the transform as shown in figure 3.2.1b. Each state index is the sum (Boolean 'or') of all combinations of index and input bits where that index bit is set. 

Steps taken for the SAFEMSL example:

Figures 3.2.1j and 3.2.1k show compilable source code output from LDT.  In this case, a Ada implementation of the state machine with Boolean equations was chosen for the transform function.

11- The logic of the state machine can now be reduced.

Following the process for logic reduction, the Boolean equivalent for the state machine implementation is as shown in figure 3.2.1i.  The unreduced logic equation would be a sum of products where a term would appear on the left hand side of the equation for each combination of state bits and input bits that resulted in the next state bit (A for state bit number 0 or B for state bit number 1) being equal to 1.

Steps taken for the SAFEMSL example:

SAFEMSL's next state equations and the Ada source code to implement SAFEMSL were found, reduced, and generated by hitting "G" for generate, then "A" for Ada source code option, then "B" for Boolean logic inplementation of the state machine transform. The boolean equations were displayed and the Enter key was hit to display the next equation, then Enter hit again to return to the main menu.

Ada source code was found in file SAFEMSL_.ADA and SAFEMSL.ADA. SAFEMSL_.ADA is a package specification and body for the state machine. SAFEMSL.ADA is a procedure to call and test the compiled and linked SAFEMSL. SAFEMSL.ADA is also contains a case statement location for each state. It is here that the procedure calls, task calls or processes for that state are to be placed. Each state's case condition is annotated with the note attached to that state while in the transition table. Also included in the case condition are the possible transitions from that state and input conditions necessary for that transition. Where the transitions are not specified, are all to one state or to this state only, they are commented as such.

Unfortunately, the compiler used to compile and link SAFEMSL did not include representation clauses, so the code was implemented with constructs that are slower than possible with representation clauses that map Next_state to a bit assigned record, but the software does work.  SAFEMSL can be run by entering, at the system prompt, SAFEMSL, then (Enter).  For simplicity, SAFEMSL does not check for operator errors which will cause unhandled exceptions, such as constraint errors.

          _________       _________

         |         |  1  |         |

         |  READY  |---->|  AIMED  |

         |_________|     |_________|

              |          /    |

             3|        4/     |2         

          ____V____    /  ____V____

         |         |<--  |         |

         | INVALD  |<----|  FIRE   |

         |_________|  5  |_________|

      Figure 3.2.1a SAFEMSL State Transition Diagram.

This diagram shows the possible transitions between the states.  READY, AIMED or FIRE may all go to the INVALD state upon an erroneous sequence of inputs.  Under a normal sequence, READY transitions to AIMED and AIMED transitions to FIRE.

The numbered transitions are described below.

Transition 1:

State 0 named READY will transition to state 1 named AIM when  FUEL and COMPTR and not AIMED and not BUTTON.

Transition 2:

State 1 named AIMED will transition to state 3 named FIRE when  FUEL and COMPTR and AIMED and BUTTON. 

Transition 3:

State 0 named READY will transition to state 2 named INVALD when  AIMED or BUTTON.

Transition 4:

State 1 named AIMED will transition to state 2 named INVALD when  not COMPTR or not FUEL or not AIMED and BUTTON.

Transition 5:

State 3 named FIRE will transition to state 2 named INVALD when  not BUTTON or not AIMED or not COMPTR or not FUEL.  

State 0 named READY will stay in state 0 named READY when  not COMPTR and not AIMED and not BUTTON or not FUEL and not AIMED and not BUTTON 

State 1 named AIMED stay in state 1 named AIM when  FUEL and COMPTR and not BUTTON.

There are no transitions from state 2 named INVALD.  This is a dead state.




State 3 named FIRE will stay in state 3 named FIRE when  FUEL and COMPTR and AIMED and BUTTON.


                   __________

                  |          |

  Clock --------->|          |

                  | Register |

           -------|          |<-------

          |       |__________|        |

  Present |                           | Next

  State   |     _______________       | State

  Indexes |    |               |      | Indexes

  (2) CD   --->|               |------  (2) AB

               |    Next       |         

     Input     |    State      | Output

     Variables |    Equations  | Variables

     (4) WXYZ  |      or       | (1) FIRE     

     --------->|    Transform  |------->

               |               |         

               |_______________|

            Figure 3.2.1b Sequential State Machine

              for SAFEMSL Example

A = Next state bit identifier (index) number 0

B = Next state index number 1

C = Present state index number 0

D = Present state index number 1

W = FUEL

X = CMPTR

Y = AIMED

Z = BUTTON 

FIRE is the only output and is asserted only when the FIRE state is true.

            \C   0     1               

            D\ _____ _____                 

              |     |     |             

            0 |  0  |  1  |             

              |_____|_____|   State Combination Map          

              |     |     |             

            1 |  2  |  3  |             

              |_____|_____|             

                    /      \      

                   /        \      

                  /          \              

                 /            \        

                /              \  Expansion of cell           

               /                \  for state #3, named FIRE.

              /                  \

             /                    \    

            /                      \ 

           \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  2  |  2  |  2  |  2  | 

            |_____|_____|_____|_____| 

            |     |     |     |     | 

         01 |  2  |  2  |  2  |  2  | 

            |_____|_____|_____|_____| Input Combination Map

            |     |     |     |     | (Specifies Transition

         11 |  2  |  2  |  3  |  2  |  to next state)

            |_____|_____|_____|_____| 

            |     |     |     |     | 

         10 |  2  |  2  |  2  |  2  | 

            |_____|_____|_____|_____| 

       Figure 3.2.1c Expansion of FIRE state map cell.

         A

          \C   0     1               

          D\ _____ _____                 

            |     |     |             

          0 |  0  |  1  |             

            |_____|_____|             

            |     |     |             

          1 |  2  |  3  |             

            |_____|_____|             

      Next state bit map for next state bit identifier 0 (A)

         B

          \C   0     1               

          D\ _____ _____                 

            |     |     |             

          0 |  0  |  1  |             

            |_____|_____|             

            |     |     |             

          1 |  2  |  3  |             

            |_____|_____|             

      Next state bit map for next state bit identifier 1 (B)

Figure 3.2.1d SAFEMSL state combination map for each state identifier bit.

                   FUEL****** 

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  0  |  0  |  1  |  0  | 

            |_____|_____|_____|_____| 

       A    |     |     |     |     | 

       I 01 |  2  |  2  |  2  |  2  | 

       M    |_____|_____|_____|_____| 

       E    |     |     |     |     | B

       D 11 |  2  |  2  |  2  |  2  | U

       *    |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  2  |  2  |  2  |  2  | O

            |_____|_____|_____|_____| N

                         CMPTR******

            \                       /

             \                     /

              \                   /

               \                 /

                \               /

                 \             /

                  \           /

                   \         /

                    \       /

                   \C   0     1               

                   D\ _____ _____                 

                     |     |     |             

                   0 |  0  |  1  |             

                     |_____|_____|   State Combination Map          

                     |     |     |             

                   1 |  2  |  3  |             

                     |_____|_____|             

          Figure 3.2.1e Transition map for State 0.

                   FUEL*******

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  2  |  2  |  1  |  2  | 

            |_____|_____|_____|_____| 

       A    |     |     |     |     | 

       I 01 |  2  |  2  |  1  |  2  | 

       M    |_____|_____|_____|_____| 

       E    |     |     |     |     | B

       D 11 |  2  |  2  |  3  |  2  | U

       *    |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  2  |  2  |  2  |  2  | O

            |_____|_____|_____|_____| N

                         CMPTR******

            \                       /

             \                     /

              \                   /

               \                 /

                \               /

                 \             /

                  \           /

                   \         /

                    \       /

             \C   0     1               

             D\ _____ _____                 

               |     |     |             

             0 |  0  |  1  |             

               |_____|_____|   State Combination Map          

               |     |     |             

             1 |  2  |  3  |             

               |_____|_____|             

        Figure 3.2.1f Transition map for State 1.

                  \C   0     1               

                  D\ _____ _____                 

                    |     |     |             

                  0 |  0  |  1  |             

                    |_____|_____|   State Combination Map          

                    |     |     |             

                  1 |  2  |  3  |             

                    |_____|_____|             

                    /      \      

                   /        \      

                  /          \              

                 /            \        

                /              \Expansion of cell           

               /                \for state #2, named INVALD.

              /                  \

             /                    \    

            /                      \ 

                   FUEL*******

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  2  |  2  |  2  |  2  | 

            |_____|_____|_____|_____| 

      A     |     |     |     |     | 

      I  01 |  2  |  2  |  2  |  2  | 

      M     |_____|_____|_____|_____| 

      E     |     |     |     |     | B

      D  11 |  2  |  2  |  2  |  2  | U

      *     |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  2  |  2  |  2  |  2  | O

            |_____|_____|_____|_____| N

                         CMPTR******

        Figure 3.2.1g Transition map for State 2.

            \C   0     1               

            D\ _____ _____                 

              |     |     |             

            0 |  0  |  1  |             

              |_____|_____|   State Combination Map          

              |     |     |             

            1 |  2  |  3  |             

              |_____|_____|             

                    /      \      

                   /        \      

                  /          \              

                 /            \        

                /              \  Expansion of cell           

               /                \  for state #3, named FIRE.

              /                  \

             /                    \    

            /                      \ 

                   FUEL*******

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  2  |  2  |  2  |  2  | 

            |_____|_____|_____|_____| 

       A    |     |     |     |     | 

       I 01 |  2  |  2  |  2  |  2  | 

       M    |_____|_____|_____|_____| 

       E    |     |     |     |     | B

       D 11 |  2  |  2  |  3  |  2  | U

       *    |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  2  |  2  |  2  |  2  | O

            |_____|_____|_____|_____| N

                         CMPTR******

        Figure 3.2.1h Transition map for State 3.

A :=

 not D and W and X and not Y and not Z

 or C and not D and W and X and not Z

 or C and W and X and Y ;

B := 

 C and not X  

 or D  

 or C and not W  

 or not X and Y  

 or not W and Y  

 or not C and Y  

 or Z ;

  Figure 3.2.1i Resulting transform equations to implement state machine SAFEMSL after logic has been reduced.

Figure 3.2.1j Ada Calling Procedure Source Code.

The name of this file is SAFEMSL.ADA.

--                  SECURITY CLASSIFICATION                    

-- *********************************************************   

--                     CSCI_TITLE                              

--                 PROCEDURE SPECIFICATION                     

--                    CSC safemsl                                 

--  DESCRIPTION:                                               

--    This procedure implements a state machine of 4 inputs, 

--    4 states and 1 outputs.  

--    INPUTS:                                                    

--      Input number 0 named FUEL                                 

--      Input number 1 named COMPTR                                 

--      Input number 2 named AIMED                                 

--      Input number 3 named BUTTON                                 

--    OUTPUTS:                                                    

--      Output number 0 named FIRE                                 

--    STATES:                                                    

--      State number 0 named READY                                 

--      State number 1 named AIM                                 

--      State number 2 named INVALD                                 

--      State number 3 named FIRE                                 

--  REFERENCES:                                                

--    none                                                     

--  EXCEPTION HANDLING AND ERROR PROCESSING:                   

--    none                                                     

--  LIMITATIONS:                                               

--    none                                                     

--  WAIVERS:                                                   

--    none                                                     

--  MODIFICATIONS:                                             

--    NUMBER      DATE      RSE   DESCRIPTION                  

--     1.0      5/1/1993                                         

--  CODE CLASSIFICATION:                                       

--       Not yet given a classification.                       

-- *********************************************************   

with safemsl_package;

with Calendar;

with Text_IO;

procedure safemsl is 

    package Int_IO is new Text_IO.Integer_IO(Integer); 

    Input_field_upper_cnt     : Constant := 3;

    State0                    : Constant := 0;

    READY                     : Constant := 0;

    AIM                       : Constant := 1;

    INVALD                    : Constant := 2;

    FIRE                      : Constant := 3;

    Input                     : safemsl_package.Input_type;

    Outputs                   : safemsl_package.Output_type;

    Input_cnt                 : Integer;

    State_machine_valid       : Boolean;

    Present_state             : safemsl_package.Next_state_type;

begin

    safemsl_package.Initialize_safemsl(State0);

    State_machine_valid := True;

    While State_machine_valid loop

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(0);

        Text_IO.Put(" named FUEL");

        Text_IO.Put(" ");

        Int_IO.Get(Input(0));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(1);

        Text_IO.Put(" named COMPTR");

        Text_IO.Put(" ");

        Int_IO.Get(Input(1));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(2);

        Text_IO.Put(" named AIMED");

        Text_IO.Put(" ");

        Int_IO.Get(Input(2));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(3);

        Text_IO.Put(" named BUTTON");

        Text_IO.Put(" ");

        Int_IO.Get(Input(3));

        Text_IO.New_line;

        safemsl_package.safemsl(

                                Input => Input,

                                Out_state => Present_state,

                                Outputs => Outputs);

    case Present_state is

        when READY => 

            -- Note for READY state: --

            --   If BUTTON pushed, go to FIRE (state 3), else if FUEL and

            --       COMPTR true, go to AIMED (state 1), else stay in state.   

            -- *** Place code for READY here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named READY ");

            Text_IO.New_line;

            Outputs(0) := 0;

            Text_IO.Put("Outputs(0) := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  This state will transition to state 0 named READY when 

            --       not COMPTR and not AIMED and not BUTTON

            --       or  not FUEL and not AIMED and not BUTTON    

            --  This state will transition to state 1 named AIM when  FUEL

            --       and COMPTR and not AIMED and not BUTTON    

            --  This state will transition to state 2 named INVALD when 

            --       AIMED or  BUTTON    

            --  There are no transitions specified from this state to

            --       state number 3 named FIRE.     

        when AIM => 

            -- Note for AIM state: --

            --   Again, any time BUTTON is pushed, FIRE (state 3 ) will be

            --       entered, else stay in this state unless

            --       FUEL and COMPTR are true and AIMED is false.   

            -- *** Place code for AIM here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named AIM ");

            Text_IO.New_line;

            Outputs(0) := 0;

            Text_IO.Put("Outputs(0) := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  There are no transitions specified from this state to

            --       state number 0 named READY.     

            --  This state will transition to state 1 named AIM when  FUEL

            --       and COMPTR and not BUTTON    

            --  This state will transition to state 2 named INVALD when 

            --       not COMPTR or  not FUEL or  not AIMED and BUTTON    

            --  This state will transition to state 3 named FIRE when 

            --       FUEL and COMPTR and AIMED and BUTTON    

        when INVALD => 

            -- Note for INVALD state: --

            --   No transition should occur to this state, but if it does,

            --       try to enter FIRE state.   

            -- *** Place code for INVALD here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named INVALD ");

            Text_IO.New_line;

            Outputs(0) := 0;

            Text_IO.Put("Outputs(0) := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  There are no transitions specified from this state to

            --       state number 0 named READY.     

            --  There are no transitions specified from this state to

            --       state number 1 named AIM.     

            --  There are no transitions from this state.  This is a dead

            --       state.     

            --  There are no transitions specified from this state to

            --       state number 3 named FIRE.     

        when FIRE => 

            -- Note for FIRE state: --

            --   If FIRE state is ever entered, keep trying to FIRE missile.   

            -- *** Place code for FIRE here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named FIRE ");

            Text_IO.New_line;

            Outputs(0) := 1;

            Text_IO.Put("Outputs(0) := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  There are no transitions specified from this state to

            --       state number 0 named READY.     

            --  There are no transitions specified from this state to

            --       state number 1 named AIM.     

            --  This state will transition to state 2 named INVALD when 

            --       not BUTTON or  not AIMED or  not COMPTR or  not FUEL    

            --  This state will transition to state 3 named FIRE when 

            --       FUEL and COMPTR and AIMED and BUTTON    

          when others =>

              -- *** Place code for undefined states here. ***   

              State_machine_valid := False;

      end case;

  end loop;

end safemsl;

Figure 3.2.1k  Ada package specification and body source code. 

The name of this file is SAFEMSL_.ADA.

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                     CSCI_TITLE                                 

--                  PACKAGE SPECIFICATION                         

--                    CSC safemsl_Package                         

--  DESCRIPTION:                                                  

--    This package specification implements the interface to  

--    state machine safemsl. safemsl is composed of 

--    4 inputs, 4 states and 1 outputs.  

--    The interfaces to two procedure are specified in this     

--    body. They are safemsl and Initialize_safemsl.  

--    Initialize_safemsl sets the state machine state to   

--    the value of Initial_state. safemsl performs any

--    state transitions based upon the inputs. 

-- 

--    Safemsl is a launcher for an intercontinental ballistic

--     missile. In order to avert a nuclear war, the missile

--     is only launched upon the proper sequence of input combinations.   

-- 

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0      5/1/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

package safemsl_package is

    Number_inputs                : Constant := 4;

    Number_outputs               : Constant := 1;

    Number_state_bits            : Constant := 2;

    subtype Input_range          is Integer range 0..Number_inputs;

    subtype Output_range         is Integer range 0..Number_outputs;

    subtype Next_state_type      is Integer range 0..3;

    type Input_type              is Array(Input_range) of Integer range 0..1; 

    type Output_type             is Array(Output_range) of Integer range 0..1; 

    Next_state                   : Next_state_type;

    procedure safemsl(Input                    : in     Input_type ;

                      Out_state                :    out Next_state_type;

                      Outputs                  :    out Output_type);

    procedure Initialize_safemsl(Initial_state : in     Next_state_type);

end safemsl_package;

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                       CSCI_TITLE                               

--                      PACKAGE BODY                              

--                    CSC safemsl_Package                         

--  DESCRIPTION:                                                  

--    This package body implements the interface to  

--    state machine safemsl. safemsl is composed of 

--    4 inputs, 4 states and 1 outputs.

--    Two procedures are included in this package body.

--    They are safemsl and Initialize_safemsl. 

--    Initialize_safemsl sets the  state machine state 

--    to the value specified in Next_state. 

--    safemsl will transition to new state based upon the inputs.   

--    The safemsl state machine is implemented with boolean logic equations.

--  ABSTRACT:                                                     

--    none                                                        

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0      5/1/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

with Text_IO; 

package body safemsl_package is

    State_field_upper_cnt        : Constant := (Number_state_bits - 1);

    Input_field_upper_cnt        : Constant := (Number_inputs - 1);

    State0                       : Constant := 0;

    type State_bit_array_type    is Array(0..State_field_upper_cnt) of Boolean; 

    type Input_array_type        is Array(0..Input_field_upper_cnt) of Boolean; 

    SB                           : State_bit_array_type := (others => False);

    State_bit_next               : State_bit_array_type := (others => False);

    IB                           : Input_array_type := (others => False);

    Index_cnt                    : Integer := 0; 

procedure safemsl(Input                    : in     Input_type ;

                  Out_state                :    out Next_state_type;

                  Outputs                  :    out Output_type)

is

begin 

    For Index_cnt in SB'range loop

        SB(Index_cnt) := 

            (Next_state/(2**Index_cnt) rem 2) /= 0;

    end loop; 

    For Index_cnt in IB'range loop

        IB(Index_cnt) := 

            Input(Index_cnt) /= 0;

    end loop; 



State_bit_next(0) := (



not SB(1)  and IB(0)  and IB(1)  and not IB(2)  and not IB(3)  



) or (SB(0)  and not SB(1)  and IB(0)  and IB(1)  and not IB(3)  



) or (SB(0)  and IB(0)  and IB(1)  and IB(2)  and IB(3) );



State_bit_next(1) := (



SB(0)  and not IB(1)  



) or (SB(1)  



) or (SB(0)  and not IB(0)  



) or (not IB(1)  and IB(2)  



) or (not IB(0)  and IB(2)  



) or (not SB(0)  and IB(2)  



) or (IB(3) ); 

    Next_state := 0; 

    For Index_cnt in State_bit_next'range loop

      If State_bit_next(Index_cnt) then

          Next_state := Next_state + (2**Index_cnt);

      end if; 

    end loop;  

    Out_state := Next_state;

end safemsl; 

procedure Initialize_safemsl(Initial_state : in     Next_state_type) is

begin

    Next_state := Initial_state;

    State_bit_next := (others => False);

    SB := (others => False);

    IB := (others => False);

end Initialize_safemsl;

 end safemsl_package;

Figure 3.2.1j  VHDL specification source code. 

The SAFEMSL controller could also be implemented with hardware.  An option in the main menu generate ('g') is to select VHDL code ('v') as source. VHDL code follows.  This source is yet to be compiled and tested.

--                  SECURITY CLASSIFICATION                    

-- *********************************************************   

--                     CSCI_TITLE                              

--                 ENTITY SPECIFICATION                     

--                    HWSC safemsl                                 

--  DESCRIPTION:                                               

--    This entity implements a state machine of 4 inputs, 

--    4 states and 1 outputs.  

--    INPUTS:                                                    

--      Input number 0 named FUEL                                 

--      Input number 1 named COMPTR                                 

--      Input number 2 named AIMED                                 

--      Input number 3 named BUTTON                                 

--    OUTPUTS:                                                    

--      Output number 0 named FIRE                                 

--    STATES:                                                    

--      State number 0 named READY                                 

--      State number 1 named AIM                                 

--      State number 2 named INVALD                                 

--      State number 3 named FIRE                                 

--  REFERENCES:                                                

--    none                                                     

--  LIMITATIONS:                                               

--    none                                                     

--  WAIVERS:                                                   

--    none                                                     

--  MODIFICATIONS:                                             

--    NUMBER      DATE      RSE   DESCRIPTION                  

--     1.0      7/3/1993                                         

--  CODE CLASSIFICATION:                                       

--       Not yet given a classification.                       

-- *********************************************************   

entity MOORE is   -- Moore machine 

  port( 

  FUEL,

  COMPTR,

  AIMED,

  BUTTON  : in BIT; 

  Out3

  : out BIT

    ); 

end; 

architecture BEHAVIOR of MOORE is 

  type STATE_TYPE is (READY, AIM, INVALD, FIRE);

  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

begin

-- Process to hold combinational logic

COMBIN: process(CURRENT_STATE, 

FUEL,

COMPTR,

AIMED,

BUTTON)

begin

  case CURRENT_STATE is

    when READY => 

      FIRE <= '0';

      if 

        ( COMPTR = 0  and AIMED = 0  and BUTTON = 0  or FUEL = 0  and AIMED = 0  and BUTTON = 0 )

      then

        NEXT_STATE <= READY;

      end if;

      if 

        ( FUEL = 1  and COMPTR = 1  and AIMED = 0  and BUTTON = 0 )

      then

        NEXT_STATE <= AIM;

      end if;

      if 

        ( AIMED = 1  or BUTTON = 1 )

      then

        NEXT_STATE <= INVALD;

      end if;

    when AIM => 

      FIRE <= '0';

      if 

        ( FUEL = 1  and COMPTR = 1  and BUTTON = 0 )

      then

        NEXT_STATE <= AIM;

      end if;

      if 

        ( COMPTR = 0  or FUEL = 0  or AIMED = 0  and BUTTON = 1 )

      then

        NEXT_STATE <= INVALD;

      end if;

      if 

        ( FUEL = 1  and COMPTR = 1  and AIMED = 1  and BUTTON = 1 )

      then

        NEXT_STATE <= FIRE;

      end if;

    when INVALD => 

      FIRE <= '0';

      if 

        ( 1 = 1 )

      then

        NEXT_STATE <= INVALD;

      end if;

    when FIRE => 

      FIRE <= '1';

      if 

        ( BUTTON = 0  or AIMED = 0  or COMPTR = 0  or FUEL = 0 )

      then

        NEXT_STATE <= INVALD;

      end if;

      if 

        ( FUEL = 1  and COMPTR = 1  and AIMED = 1  and BUTTON = 1 )

      then

        NEXT_STATE <= FIRE;

      end if;

-- Process to hold synchronous elements (flip-flops)

SYNCH: process

begin

  wait until CLOCK'event and CLOCK = '1';

  CURRENT_STATE <= NEXT_STATE;

end process;

end BEHAVIOR;

3.2.1.2 Test and Analysis of SAFEMSL.

3.2.1.2.1 Test of SAFEMSL State Machine Operation.

The LDT test option is selected from the main menu by entering 't' or 'T'.  A state map showing 4 states is displayed. Since the default beginning state is 0, the cursor is found at the cell where the state bit identifiers are 0 for index0 and 0 for index1.  This represents the present state.  The state machine may be forced to another present state by entering 'n' or 'N' and then entering the new state by name ('a','A'), selection ('s','S'), or number ('n','N').  A transition will occur anytime the Enter key is pressed in the state machine test menu.  The transition may be to the present state or to a new state, depending upon the inputs shown to on the left hand side of the state machine test map.  The inputs can be changed by entering 'c' or 'C' from the state machine map menu.  Since for SAFEMSL, the only transition from SAFEMSL that does not stay in READY or go to INVALD is when FUEL is true and CMPTR is true, test this transition by entering 'c', then 1 (FUEL = 1), 1 (CMPTR = 1), 0 (AIMED = 0) and 0 (BUTTON = 0).  When Enter is pressed, the state will transition to AIMED (State number 1) as shown by the cursor moving to the position where index0 = 1 and index1 = 0.  Here the output (FIRE) for this state is 0 or False.  

Because SAFEMSL state machine will stay in AIMED as long as FUEL and CMPTR are 1, pressing Enter will caused no changes.  If, however, the inputs are changed to 1 (FUEL = 1), 1 (CMPTR = 1), 1 (AIMED = 1) and 1 (BUTTON = 1), then upon the next pressing of the Enter key, the state machine will transition to the FIRE state.  In FIRE state, the output FIRE will go to 1, indicating that FIRE output is true or active.  While in the FIRE, state, if any of the inputs is set to 0, the state will transition from FIRE to INVALD and the FIRE output will go to 0 or False.  No combination of inputs will cause SAFEMSL state machine to transition from INVALD.  Other combinations and sequences can be tested in a similar manner.

The execution time for any sequence of state transitions can be tested by going to the start state, entering 't', then transitioning to those states.  For example, with SAFEMSL loaded and the state machine test option selected, if it is desired to measure the execution time from AIMED (state number 1) with inputs FUEL, CMPTR, not AIMED and not BUTTON for 3 clocks, then with inputs FUEL, CMPTR, AIMED, and not BUTTON with 2 clocks, then FUEL, CMPTR, AIMED and BUTTON for a transition to FIRE, then 4 clocks in state FIRE (State number 3), then change of inputs to FUEL, not CMPTR, AIMED and BUTTON which will force a transition to INVALD.  The result of this ordering of inputs and transitions will be 3 + 2 + 4 + 4 + 1 = 11 (TBD) time units.

The main menu may be entered by entering 'q', 'Q' or Esc.

3.2.1.2.2 Identification of Dead and Hanging States.

With SAFEMSL still loaded, a search for dead and hanging states will be performed by entering 'd' or 'D' from the main menu.  The search for dead and hanging states is another view of the state machine that can aid in identifying any errors with the state machine.  

INVALD is shown as a dead state, since no transitions are allowed from this state.  READY is shown as a hanging state, since no states transition to this state. 

3.2.1.2.3  Search for the Worst Case Execution Time.

In this example, it is desired to find the worst case time from READY to FIRE with a maximum of 50 transitions and a maximum of four visits to any one state.  This information is needed since it must be proven that the missile will be commanded to fire (under the proper sequence of inputs) within a certain time requirement, which is TBD time units.  

It is also desired to find the worst case time between the READY state and entry into the INVALD state with a maximum of 50 transitions and a maximum of four visit to any one state.  This information is needed since missile firing can be shutdown, but only if the INVALD state is entered within TBD time units.

To find the worst case transition time from READY to FIRE, the worst case transition time option is selected from the main menu by entering 'w' or 'W'.  At this point the Worst Case Option banner is displayed and the operator is asked for the means to enter the beginning and ending states.  For this example, by name is selected by entering 'a'.  Then the beginning state 'READY' is entered followed by the Enter key, then the ending state 'FIRE' followed by the Enter key.  

The operator is then asked for the maximum number of transitions that may occur before the ending state is reached.  For this example, that number is 50.  The operator is asked for the maximum number of visits to any one state that may occur. This is 4.  LDT will then display the sequence of transitions that represent the worst case execution time.  This number is 6 (TBD).

To find the worst case transition time between the READY state and the INVALD state, the 's' select option is chosen.  The beginning state is chosen by entering 'y', when READY is displayed as the state to be chosen. Then the ending state is chosen by scrolling the displayed state names until 'INVALD' appears, at which point 'y' is entered.  

The operator is then again asked for the maximum number of transitions that may occur before the ending state is reached.  For this example, that number is 50.  The operator is asked for the maximum number of visits to any one state that may occur. This is 4.  LDT will then display the sequence of transitions that represent the worst case execution time.  This number is 16 (TBD).

3.2.1.2.4  Calculation of State Machine Hardware Reliability.

SUREMSL's imaginary hardware is implemented with redundant hardware for all paths.  All sensors are triply redundant except for BUTTON, which is dual redundant. Sensors have the following characteristics:

FUEL : quadruple redundant sensors. MTBF = .75 * 10**+4.

CMPTR: triply redundant discretes. MTBF = .4 * 10**+4.

AIMED: triply redundant output from silo computers which 

compare target 

coordinates returned from missile computers. MTBF = .6 * 

10**+5.

BUTTON: dual redundant keyed switches. MTBF = .5 * 10**+6.

The state machine itself is implemented with three separate types of state machines in order to guard against an implementation common design error present in all channels at the same time. The types of state machines are: a gate array with an MTBF of .3 * 10**+5; an Intel 80960 processor with software written in Ada where processor and software have an MTBF of .3 * 10**+4; and a relay circuit composed of relays for memory and diode and wired-or circuits for the combinational logic with a combined MTBF of .7 * 10**+6 MTBF.

The output, FIRE is a quadruply redundant, current limited circuit which is sent to a heating element in the missile igniter.  Any three of the four FIRE circuits must have current to cause the igniter to fire.  Each circuit has an MTBF of .7 * 10**+8.  The 'voter' heating element circuit has an MTBF of .8 * 10**+9.

Starting from the sensors to the firing circuit, the probability of failure for each component follows.  Names in parenthesis are the files which represent the conditions for success needed for each set of components.

FUEL SENSORS (PFUEL):

CMPTR SENSORS (PCMPTR):

AIMED SENSORS (PAIM):

BUTTON SENSORS (PBTN):

STATE MACHINE (PSTATM):

OUTPUT CIRCUIT (POUTCT):

VOTER CIRCUIT (PVOTER):

These components can in turn be seen as components of the total SAFEMSL digital hardware (PSAFEM) which has a reliability of: TBD.

The Stage State representation of this hardware, as explained in reference 15, is shown in figure 3.2.1.2.4 .

        _                                        

     --|_|--                                        

    |   _   |        _            _                

     --|_|--      --|_|--      --|_|--            

    |   _   |    |   _   |    |   _   |        _    

     --|_|--      --|_|--      --|_|--      --|_|--

 ---|   _   |----|   _   |----|   _   |----|   _   |--------

     --|_|--      --|_|--      --|_|--      --|_|--         |

                                                            |

      FUEL         CMPTR        AIMED        BUTTON         |

     3 of 4       2 of 3       2 of 3        2 of 2         |

     .75 +4       .4 +4        .6 +5         .5 +6          |

                                                            |

 -----------------------------------------------------------

|                       _   

|                    --|_|--

|                   |   _   |

|                    --|_|--

 -------------------|   _   |-----------------------------

                     --|_|--                              |

                                                          |

                  STATE MACHINE                           |

                2 of 3 Dissimilar                         |

                Gate Array .3 +5                          |

                80960      .3 +4                          |

                Relay      .7 +6                          |

                                                          |

 ---------------------------------------------------------

|                       _   

|                    --|_|--

|                   |   _   |

|                    --|_|--             _

 -------------------|   _   |-----------|_|-------- SUCCESS

                     --|_|--                              

                    |   _   |

                     --|_|--                              

                  OUTPUT CIRCUIT       VOTER

                      3 of 4           1 of 1 

                      .7 +8             .8 +9

Figure 3.2.1.2.4  Stage State Representation of SAFEMSL; Hardware Reliability.

3.2.1.2.5  SAFEMSL Input Vector File; (SAFEFIR.VCT and SAFEMSTD.VCT).

Two ASCII text files that can be read under the test option (t) reached form the main menu are safe missile fire (SAFEFIR.VCT) and safe missile dud (SAFEDUD.VCT).  They are called up upon entry to the test option.  The operator is asked if inputs are to be generated by a test vector input file.  If 'y' is entered, the operator is asked for the name of the file.  If either of these file names is entered, the state machine test will read a set of inputs at each carriage return in the test mode and will execute the state machine to find the next state.  Because the files are ASCII, they may be modified with a conventional text editor.

The two test vector files are shown below.  All numbers are decimal.  The first number that appears in the file is the number of vectors in the file.  All following numbers are the subsequent input test vectors. Numbers greater than the maximum input combination will generate an error.

Figure 3.2.1.2.5a SAFEFIR.VCT Input Test Vector File.  
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1

3

7

15

15

15

15

15

Figure 3.2.1.2.5b SAFEDUD.VCT Input Test Vector File.

7

1

3

6

7

0

0

0

0

3.2.1.2.6 SAFEMSL Output Timeline Trace File (SAFEMSL.TRC).

An output file showing the FIRE output line for the SAFEFIR.VCT set of input vectors is shown below.  This file was generated by selecting the output trace file option upon entry to the state machine test from the main menu.


 

Figure 3.2.1.2.6 SAFEMSL Output Trace File (SAFEMSL.TRC).

           *** Timeline Trace Printout ***

  This file, named, safemsl.trc contains the output trace 

  of state machine safemsl.

  The sequence of states are controlled by the test vector file SAFEFIR.vct.

  State machine parameters are as follows:

  The first column is the present state.

  Column 2 is the time necessary to transition to the next state.

  The next 4 columns are lines indicating

  the logic level of the inputs before each transition.

  Low or False input is when line is to the left. 

  High or True input is when line is to the right.

  The next 1 columns are lines indicating 

  the logic level of the outputs before each transition.

  Low or False output is when line is to the left. 

  High or True output is when line is to the right.

--    INPUTS:                                                    

--      I0= Input number 0 named FUEL                                 

--      I1= Input number 1 named COMPTR                                 

--      I2= Input number 2 named AIMED                                 

--      I3= Input number 3 named BUTTON                                 

--    OUTPUTS:                                                    

--      O0= Output number 0 named FIRE                                 

--    STATES:                                                    

--      State number 0 named READY                                 

--      State number 1 named AIM                                 

--      State number 2 named INVALD                                 

--      State number 3 named FIRE                                 

   Name      Transition_time  I0 #I1 #I2 #I3 #$O0 #

0  READY       Not valid        |#|  #|  #|  #$|  #

1  AIM       1.0000000000E+00   |#  |#|  #|  #$|  #

1  AIM       1.0000000000E+00   |#  |#  |#|  #$|  #

3  FIRE      1.0000000000E+00   |#  |#  |#  |#$  |#

2  INVALD    1.0000000000E+00 |  #|  #|  #|  #$|  #

2  INVALD    1.0000000000E+00 |  #|  #|  #|  #$|  #

2  INVALD    1.0000000000E+00 |  #|  #|  #|  #$|  #

2  INVALD    1.0000000000E+00 |  #|  #|  #|  #$|  #

2  INVALD    1.0000000000E+00 |  #|  #|  #|  #$|  #

3.2.1.2.7  Walkthrough of An Already Created SAFEMSL, SUREMSL and HEXDEC Examples.

This is a step by step example of the use of LDT via edit, analysis, and code generation.

The examples safemsl, suremsl and hexdec are loaded, analyzed and edited.  The examples are already created.  For instructions on creating a logic specification with LDT, see section 3.2.1 of the User Manual.

INSTALL THE TOOL

Create a directory in which to unzip the demo files.

Unzip and download the zip file LDT_Demo.zip into the directory you created.

After unzipping, the directory should contain dacdemo.exe, safemsl.* files, suremsl.* files and hexdec.* files.

Double click on the executable LDT_Demo.exe.

COPYWRITE AND DISLAIMER

The Logic Design Tool copywrite page will appear.

Press Enter.

The Disclaimer page will appear.

Press Enter.

STARTUP

The ‘Logic Design Tool’ State Storage and Transform will appear.

Press ‘s’ for Specification entry.

The ‘Enter or Save Specification for Noname page’ will appear.

Press ‘f’ for File entry.

The ‘Read Specification File’ page will appear.

Type ‘safemsl’ then hit Enter to load the safe missile state machine example.

The ‘Enter or Save Specification for /(directory path)/safemsl’ page will appear.

Press ‘a’ for analysis.

The ‘Analyze Specification for /(directory path)/safemsl’ page will appear.

Press ‘g’ for generate source code.

GENERATE AND VIEW SOURCE

The Generate Source page will appear.

Press ‘a’ for Ada source code.

Press ‘b’ for Boolean equation implementation.

The Next state bit equation for state bit number 0 will appear.

Press Enter.

The Next state bit equation for state bit number 1 will appear.

Press Enter.

The output bit equation for output number 0 named FIREM will appear.

Press Enter

The ‘Analyze Specification for /(directory path)/safemsl’ page

will appear.

This option has created several Ada files in the directory you created.  

With windows explorer, open up the directory and double click on the ‘modified’ bar.  The files safemsl.ada (body), safemsl_.ada (spec), safemslt.ada (exhaustive test) and safemsld.ada (interactive driver) will appear with the present date and time.  Open up the files with wordpad and look at the Ada code.  These ada files are created consistent with the Software Productivity Consortium coding standards.

STATE TRANSITION BUBBLE CHART

On the Logic Design Tool window, press ‘y’ for display safemsl in State Transition (bubble chart) mode.

The State Transition Diagram page will appear with four states. All possible transitions with the conditions necessary for each of those transitions will also be displayed on lines between the states.  Small circles on the lines closest to the next state indicate the direction of the transition. The charscters ‘/’ indicates boolean not, + indicates boolean or and * indicates boolean and.

Press Enter.

STATE MACHINE TEST USING BUBBLE CHARTS

The ‘Analyze Specification’ page for /(directory path)/safemsl page will appear.

Press ‘t’ for test of safemsl example.

Press ‘s’ for STD test of safemsl using bubble charts.

The State Transition Diagram page will appear with four states and all possible transitions with the conditions necessary for those transitions.

Press Enter to continue.

The State Transition Diagram page will appear with four states and the two possible transitions from state 0 (Ready) with the conditions necessary for those transitions.

Press Enter.

The display will flicker, but safemsl will stay in the Ready state because the conditions to transition to another state are not met.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘1’ for CMPTR input to be true. 

Press ‘0’ for AIMED input to be false. 

Press ‘0’ for BUTTON input to be false. 

Press Enter to transition to the next state AIMED with the inputs set at 1100.

Safemsl will move to AIMED (1) state.

Press Enter.  Safemsl will stay in the AIMED state.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘1’ for CMPTR input to be true. 

Press ‘1’ for AIMED input to be true. 

Press ‘1’ for BUTTON input to be true. 

Press Enter.

Safemsl will move to FIRE (3) state.

The output FIREM will change from 0 to 1.

Press Enter.  Safemsl will stay in the FIRE state.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘0’ for CMPTR input to be false. 

Press ‘1’ for AIMED input to be true. 

Press ‘1’ for BUTTON input to be true. 

Press Enter.

Safemsl will move to INVALD (2) state.

Press Enter.  Safemsl will stay in the INVALD state.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘0’ for CMPTR input to be false. 

Press ‘1’ for AIMED input to be true. 

Press ‘0’ for BUTTON input to be false. 

Press Enter.

Safemsl will stay in the INVALD (2) state.

Press ‘q’ to quit.

STATE MACHINE TEST USING KARNAUGH MAP OF STATE BITS

The Analyze Specification for /(directory path)/safemsl page will appear.

Press ‘t’ for interactive debugger test.

The ‘Test of /(directory path)safemsl State Machine’ page will appear with four states in a Karnaugh map of the two state bits.

Press Enter to select the map display of the test.

The display will flicker, but safemsl will stay in the Ready state in the upper left hand corner (not state bit 0, not state bit 1) of the map.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘1’ for CMPTR input to be true. 

Press ‘0’ for AIMED input to be false. 

Press ‘0’ for BUTTON input to be false. 

Press Enter to transition to the next state AIMED with the inputs set at 1100.

Safemsl will move to AIMED (1) state.

Press Enter.  Safemsl will stay in the AIMED state.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘1’ for CMPTR input to be true. 

Press ‘1’ for AIMED input to be true. 

Press ‘1’ for BUTTON input to be true. 

Press Enter.

Safemsl will move to FIRE (3) state.

The output FIREM will change from 0 to 1.

Press Enter.  Safemsl will stay in the FIRE state.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘0’ for CMPTR input to be false. 

Press ‘1’ for AIMED input to be true. 

Press ‘1’ for BUTTON input to be true. 

Press Enter.

Safemsl will move to INVALD (2) state.

Press Enter.  Safemsl will stay in the INVALD state.

Press ‘c’ to change inputs.

Press ‘1’ for FUEL input to be true. 

Press ‘0’ for CMPTR input to be false. 

Press ‘1’ for AIMED input to be true. 

Press ‘0’ for BUTTON input to be false. 

Press Enter.

Safemsl will stay in the INVALD (2) state.

Press ‘q’ to quit the Test of stste machine page.

The ‘Analyze Specification for /(directory path)safemsl’ will appear.

REPORT DEAD AND HANGING STATES

Press ‘d’ for detection of dead, hanging and no decision states.

The ‘Report of search for states’ page with the dead and hanging states will appear.

Press Enter

SHOW HELP OPTION

Press ‘?’ for help with the options on this page.

The ‘Analyze Menu Help’ page will appear.

Press Enter

The ‘Analyze Specification for /(directory path)safemsl’ will appear.

Press ‘q’ to go to the spec page.

The ‘Enter or Save Specification for /(directory path)safemsl’ page will appear.

EDIT TRANSFORM WITH BOOLEAN MINTERM

Press ‘e’ to edit the transform.

A map of the state bit fields will appear.

Press the left arrow button.

The state will transition for the READY state to the AIMED state, the sb0 will change from red (off color) to blue (on color) and the upper right hand cell state number (1) will change from black to red.

Press ‘g’ to go to the AIMED present state’s next state transition map.

The ‘transition Map for State Machine safemsl’ with all inputs red will appear. 

Press ‘f’ for booean input minterm entry.

Press ‘n’ for numerical entry of the state.

Type ‘3’ then Enter for the desired state (FIRE).

The value at the 0000 location will change from black to red.

Press 0 for input bit FUEL to be 0.

Press 1 for input bit COMPTR to be 1.

Press x for input bit AIMED to be a don’t care.

Press x for input bit BUTTON to be a don’t care.

All the next states in the right most column (combinations /FUEL*COMPTR) will be set to 3.

EDIT TRANSFORM WITH SINGLE ENTRY

Using arrow keys, move highlighted red location to condition where all inputs are high (blue).

Type ‘1’, and the value at combination 1111 will turn green.  Press Enter and the value will turn red.

DISPLAY CONDITIONS FOR TRANSITION FROM THIS PRESENT STATE

Press ‘b’ (upper case) to see all transitions from this state and the conditions for transition for each state.

The input conditions for transition to state 0 will be displayed.

Press Enter.

The input conditions for transition to state 1 will be displayed.

Press Enter.

The input conditions for transition to state 2 will be displayed.

Press Enter.

The input conditions for transition to state 3 will be displayed.

There are no transitions to state 3 (FIRE) from state 0 (READY).

Press Enter.

Press ‘q’.

Press ‘q’.

CHANGE NAME OF INPUTS, OUTPUTS AND STATE BITS

The ‘Enter or Save Specification for /(directory path)safemsl’ page will appear.

Press ‘i’ to change the input, output and state bit names.

The prompt for the name of Input #0 will appear.

Type test0, then press Enter.

The prompt for the name of Input #1 will appear.

Type test1, then press Enter.

The prompt for the name of Input #2 will appear.

Type test2, then press Enter.

The prompt for the name of Input #3 will appear.

Type test3, then press Enter.

The prompt for the name of Output #0 will appear.

Type out0, then press Enter.

The prompt for the name of State Bit #0 will appear.

Type sbt0, then press Enter.

The prompt for the name of State Bit #1 will appear.

Type sbt1, then press Enter.

The ‘Enter or Save Specification for /(directory path)safemsl’ page will appear.

The change in names will be seen on the transform.

CLEAR ALL INPUTS

Press ‘c’ to set all next state transitions to 0.

Press ‘e’ to edit the transform.

A map of the state bit fields will appear.

Press ‘g’ to go to the READY present state’s next state transition map.

The ‘Transition Map for State Machine safemsl’ with all inputs red will appear with all next states set to 0.

Enter ‘q’ to quit.

The intermediate combination map will appear.

Enter ‘q’ to quit.

The ‘Enter or Save Specification for /(directory path)safemsl’ page will appear.

ENTER NEXT STATE STATE BIT EQUATION

Enter ‘b’ to enter specification via next state bit or output bit.

Enter ‘s’ for entry via next state bit.

Enter ‘s’ for single entry.

Type ‘0’ and Enter for state bit 0 equation entry.

Type ‘2’ for two minterms.

Type ‘4’ then Enter for number of indexes in first minterm.

Press up arrow twice, then ‘y’ for FUEL as the first index in minterm.

Press ‘1’ for FUEL set at 1.

Press up arrow three times, then ‘y’ for COMPTR as the second index in minterm.

Press ‘1’ for COMPTR set as 1.

Press up arrow four times, then ‘y’ for AIMED set at third index in minterm.

Press ‘1’ for AIMED set as 1.

Press up arrow five times, then ‘y’ for BUTTON set at fourth index in minterm.

Press ‘1’ for BUTTON set as 1.

Type 1 for one index in minterm number 1.

Press up arrown five times, the ‘y’ for BUTTON set at the fourth and only index in minterm.

Press ‘1’ for BUTTON set as 1.

The state bit equation will be printed at the top of the page.

Press any key to continue.

VERIFY THAT THE BOOLEAN EQUATION WAS ENTERED

The ‘Enter or Save Specification for /(directory path)safemsl’ page will appear.

Press ‘e’ to edit the transform.

A map of the state bit fields will appear.

Press ‘g’ to go to the READY present state’s next state transition map.

The ‘Transition Map for State Machine safemsl’ with all inputs red will appear with all next states set to 0.

LOAD THE SUREMSL EXAMPLE

Enter ‘q’ to quit the transition map menu.

Press ‘q’ to quit the intermediate map.

The ‘Enter or Save Specification for /(directory path)safemsl’ page will appear.

Press ‘s’ to specify a transform.

The ‘Enter or Save Specification for /(directory path) will be displayed.

Enter ‘f’ to load a new file.

Type ‘suremsl’ to load the suremsl files.

The ‘Read Specification File’ menu will appear.

Type ‘suremsl’ and Press Enter.

The ‘Enter or Save Specification for /(directory path)suremsl’ page will appear.

COLLAPSE TRANSITION DIAGRAMS IN THE SUREMSL EXAMPLE

Enter ‘e’ for edit.

The “Intermediate Combination Map’ will appear.

Move the red highlighted state bit value to State 2 (INVALD) by pressing the down arrow key.

Enter ‘g’ to go to the transition map for State 2 (INVALD).

The ‘Transition Map for State Machine suremsl’ page will appear.

Press ‘a’ to indicate active and inactive (don’t care) inputs.

Type ‘1’ for field number 1, then press Enter.

Press ‘i’ for inactive for FUEL input.

Press ‘i’ for inactive for COMPTR input.

Press ‘i’ for active for AIMED input.

Press ‘i’ for active for BUTTON input.

The ‘Transition Map for State Machine suremsl’ page will appear with all combinations collapsed to one cell marked as a don’t care (X)q.

LOAD HEXDEC EXAMPLE

Enter ‘q’ to quit.

The ‘Intermediate combination map’ will appear.

Enter ‘q’ to quit.

The ‘Enter or Save Specification for /(directory path)suremsl’ page will appear.

Enter ‘s’ to load a specification.

Enter ‘f’ to load a file.

The ‘Read Specification File’ page will appear.

Type ‘hexdec’ then press Enter.

The ‘Enter or Save Specification for /(directory path)hexdec’ page will appear with not state storage above the transform indicating combinatorial logic.

Press ‘e’ to edit the transform.

The ‘Transition Map for Combinational Logic /(directory path)hexdec page will appear.

Move the cursor to the combination where all inputs are high (1111) with the direction arrows.

Press ‘o’ to change outputs for this combination.

Press ‘1’ for DEC00 to be set to 1.

Press ‘1’ for DEC01 to be set to 1.

Press ‘1’ for DEC02 to be set to 1.

Press ‘1’ for DEC03 to be set to 1.

Press ‘1’ for DEC10 to be set to 1.

A red highlighted 31 will appear in the combination 1111 cell of the Transition Map.

Press ‘q’ to quit.

The ‘Enter or Save Specification for /(directory path)hexdec’ page will appear.

Enter ‘q’ to quit.

The ‘Logic Design Tool’ page will appear.

Press ‘q’ to quit.

Type prompt ‘To exit LDT...’ will appear.

Press any key.

Click the button in the upper right hand corner.

The window will disappear and the session will be over.

3.2.2 Sure Missile Launcher. (SUREMSL)

SUREMSL launcher is identical to SAFEMSL launcher except for the state transition maps shown below.

This state machine is assumed to be a missile launch controller on board a fighter aircraft.  Aircraft power is only applied to the aircraft's missile while in the air and in a hostile situation.  Therefore, if the pilot commands a launch, it is because he has sensed a threat, and every attempt should be made to perform the launch even though the missile does not indicate it has fuel (FUEL), nor does it indicate the computer is up and passes its health checks (CMPTR), nor does the missile indicate that the its radar has acquired the target (AIMED).  

Figure 3.2.2e shows possible transitions from the READY state. Anytime BUTTON is pushed, the pilot wants action, therefore, an attempt will be made to launch the missile even though FUEL, CMPTR and AIMED have not indicated they are ready. If, however, FUEL and CMPTR become both true, the launch controller will go to the AIMED state.

Figure 3.2.2f shows possible transitions from the AIMED state.  Again, any time BUTTON is pushed, an attempt will be made to launch, even though the other inputs may not yet indicate they are true. If AIMED becomes true, the launcher will stay in this state, or the launcher will stay in this state if FUEL and CMPTR remain both true.

Figure 3.2.2g shows possible transitions from the INVALD state.  If any entry to this state occurs, an attempt to launch will occur.

Figure 3.2.2h shows the possible transitions from the FIRE state.  Any time this state is entered, the launcher will stay in this state and command a FIRE output.

          _________       _________

         |         |  1  |         |

         |  READY  |---->|  AIMED  |

         |_________|<----|_________|

                   \  5       |

                   3\         |2         

          _________  \    ____V____

         |         |  -->|         |

         | INVALD  |---->|  FIRE   |

         |_________|  4  |_________|

      Figure 3.2.2a SUREMSL State Transition Diagram.

This diagram shows the possible transitions between the states.  READY, AIMED or FIRE may all go to the INVALD state upon an erroneous sequence of inputs.  Under normal a normal sequence to FIRE, READY transitions to AIMED, and AIMED transitions to FIRE.

The numbered transitions are described below.

Transition 1:

State  0 named READY will transition to state 1 named AIM when  FUEL and COMPTR and not BUTTON.

Transition 2:

State 1 named AIMED will transition to state 3 named FIRE when  BUTTON.

Transition 3:

State 0 named READY will transition to state 3 named FIRE when  BUTTON.

Transition 4:

State 2 named INVALD will transition to state 3 named FIRE under all conditions.

Transition 5:

State 1 named AIMED will transition to state 0 named READY when  not COMPTR and not AIMED and not.

State 0 named READY will stay in state 0 named READY when  not COMPTR and not BUTTON or not FUEL and not BUTTON  }

State 1 named AIMED will stay in state 1 named AIMED when  FUEL and COMPTR and not BUTTON or AIMED and not BUTTON.

State 3 named FIRE will stay in state 3 named FIRE under

all conditions.

                   FUEL****** 

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  0  |  0  |  1  |  0  | 

            |_____|_____|_____|_____| 

       A    |     |     |     |     | 

       I 01 |  0  |  0  |  1  |  0  | 

       M    |_____|_____|_____|_____| 

       E    |     |     |     |     | B

       D 11 |  3  |  3  |  3  |  3  | U

       *    |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  3  |  3  |  3  |  3  | O

            |_____|_____|_____|_____| N

                         CMPTR******

          Figure 3.2.2e Transition map for State 0.

                   FUEL*******

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  0  |  0  |  1  |  0  | 

            |_____|_____|_____|_____| 

       A    |     |     |     |     | 

       I 01 |  1  |  1  |  1  |  1  | 

       M    |_____|_____|_____|_____| 

       E    |     |     |     |     | B

       D 11 |  3  |  3  |  3  |  3  | U

       *    |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  3  |  3  |  3  |  3  | O

            |_____|_____|_____|_____| N

                         CMPTR******

        Figure 3.2.2f Transition map for State 1.

                   FUEL*******

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  3  |  3  |  3  |  3  | 

            |_____|_____|_____|_____| 

      A     |     |     |     |     | 

      I  01 |  3  |  3  |  3  |  3  | 

      M     |_____|_____|_____|_____| 

      E     |     |     |     |     | B

      D  11 |  3  |  3  |  3  |  3  | U

      *     |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  3  |  3  |  3  |  3  | O

            |_____|_____|_____|_____| N

                         CMPTR******

        Figure 3.2.2g Transition map for State 2.

                   FUEL*******

          \WX  00    01    11    10  

         YZ\ _____ _____ _____ _____  

            |     |     |     |     | 

         00 |  3  |  3  |  3  |  3  | 

            |_____|_____|_____|_____| 

       A    |     |     |     |     | 

       I 01 |  3  |  3  |  3  |  3  | 

       M    |_____|_____|_____|_____| 

       E    |     |     |     |     | B

       D 11 |  3  |  3  |  3  |  3  | U

       *    |_____|_____|_____|_____| T

            |     |     |     |     | T

         10 |  3  |  3  |  3  |  3  | O

            |_____|_____|_____|_____| N

                         CMPTR******

        Figure 3.2.2h Transition map for State 3.

A :=

 D

 or W  and X

 or C  and Y

 or Z ;

B :=

 D  

 or Z ;

  Figure 3.2.2j Resulting transform equations to 


implement state machine SUREMSL.

Figure 3.2.2k Ada program source code for SUREMSL. 

This code is in file SUREMSL.ADA. This state machine is implemented with a software array.

--                  SECURITY CLASSIFICATION                    

-- *********************************************************   

--                     CSCI_TITLE                              

--                 PROCEDURE SPECIFICATION                     

--                    CSC Transition_driver                                 

--  DESCRIPTION:                                               

--    This procedure is an example driver for procedure 

--    Transition found in state machine package suremsl.

--    The procedure asks the operator for 4 input values.

--    The procedure then displays the next state to which the 

--    state machine has transitioned and the 1

--    output values for that state.

--    The value of Present_state is initialized and maintained by

--    this driver.

--    INPUTS:                                                    

--      Input number 0 named FUEL                                 

--      Input number 1 named COMPTR                                 

--      Input number 2 named AIMED                                 

--      Input number 3 named BUTTON                                 

--    OUTPUTS:                                                    

--      Output number 0 named FIRE                                 

--    STATES:                                                    

--      State number 0 named READY                                 

--      State number 1 named AIM                                 

--      State number 2 named INVALD                                 

--      State number 3 named FIRE                                 

--  REFERENCES:                                                

--    none                                                     

--  EXCEPTION HANDLING AND ERROR PROCESSING:                   

--    CONSTRAINT_ERROR

--    NUMERIC_ERROR

--    STORAGE_ERROR

--    others

--  LIMITATIONS:                                               

--    none                                                     

--  WAIVERS:                                                   

--    none                                                     

--  MODIFICATIONS:                                             

--    NUMBER      DATE      RSE   DESCRIPTION                  

--     1.0      5/17/1993                                         

--  CODE CLASSIFICATION:                                       

--       Not yet given a classification.                       

-- *********************************************************   

with suremsl;

with Text_IO;

procedure Transition_driver is 

    package Int_IO is new Text_IO.integer_IO(integer); 

    Input_field_upper_cnt     : constant := 3;

    READY                     : constant := 0;

    AIM                       : constant := 1;

    INVALD                    : constant := 2;

    FIRE                      : constant := 3;

    Input                     : suremsl.Input_type;

    Outputs                   : suremsl.Output_type;

    Input_cnt                 : integer;

    State_machine_valid       : Boolean;

    Present_state             : suremsl.State_type := 0;

begin  -- Transition_driver

    State_machine_valid := True;

    While State_machine_valid loop

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(0);

        Text_IO.Put(" named FUEL");

        Text_IO.Put(" ");

        Int_IO.Get(Input(0));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(1);

        Text_IO.Put(" named COMPTR");

        Text_IO.Put(" ");

        Int_IO.Get(Input(1));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(2);

        Text_IO.Put(" named AIMED");

        Text_IO.Put(" ");

        Int_IO.Get(Input(2));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(3);

        Text_IO.Put(" named BUTTON");

        Text_IO.Put(" ");

        Int_IO.Get(Input(3));

        Text_IO.New_line;

        suremsl.Transition(

                           Input => Input,

                           State => Present_state,

                           Outputs => Outputs);

    case Present_state is

        when READY => 

            -- Note for READY state: --

            --   If BUTTON pushed, go to FIRE (state 3), else if FUEL and

            --       COMPTR true, go to AIMED (state 1), else stay inthis state.   

            -- *** Place code for READY here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named READY ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named FIRE := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  This state will transition to state 0 named READY when 

            --       not COMPTR and not BUTTON or  not FUEL and not BUTTON    

            --  This state will transition to state 1 named AIM when  FUEL

            --       and COMPTR and not BUTTON    

            --  There are no transitions specified from this state to

            --       state number 2 named INVALD.     

            --  This state will transition to state 3 named FIRE when  BUTTON    

        when AIM => 

            -- Note for AIM state: --

            --   Again, any time BUTTON is pushed, FIRE (state 3 ) will be

            --       entered, else stay in this state unless

            --       FUEL and COMPTR are true and AIMED is false.   

            -- *** Place code for AIM here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named AIM ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named FIRE := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  This state will transition to state 0 named READY when 

            --       not COMPTR and not AIMED and not BUTTON

            --       or  not FUEL and not AIMED and not BUTTON    

            --  This state will transition to state 1 named AIM when  FUEL

            --       and COMPTR and not BUTTON or  AIMED and not BUTTON    

            --  There are no transitions specified from this state to

            --       state number 2 named INVALD.     

            --  This state will transition to state 3 named FIRE when  BUTTON    

        when INVALD => 

            -- Note for INVALD state: --

            --   No transition should occur to this state, but if it does,

            --       try to enter FIRE state.   

            -- *** Place code for INVALD here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named INVALD ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named FIRE := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  There are no transitions specified from this state to

            --       state number 0 named READY.     

            --  There are no transitions specified from this state to

            --       state number 1 named AIM.     

            --  There are no transitions specified from this state to

            --       state number 2 named INVALD.     

            --  This state will transition to state 3 named FIRE when 

            --       True     

        when FIRE => 

            -- Note for FIRE state: --

            --   If FIRE state is ever entered, keep trying to FIRE missile.   

            -- *** Place code for FIRE here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named FIRE ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named FIRE := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            --  There are no transitions specified from this state to

            --       state number 0 named READY.     

            --  There are no transitions specified from this state to

            --       state number 1 named AIM.     

            --  There are no transitions specified from this state to

            --       state number 2 named INVALD.     

            --  There are no transitions from this state.  This is a dead

            --       state.     

          when others =>

              -- *** Place code for undefined states here. ***   

              State_machine_valid := False;

      end case;

  end loop;

     exception

     when  CONSTRAINT_ERROR =>

       Text_IO.New_line;

       Text_IO.Put("Constraint_error in suremsl State_machine.");

       Text_IO.New_line;

     when  NUMERIC_ERROR =>

       Text_IO.New_line;

       Text_IO.Put("Numeric_error in suremsl State_machine.");

       Text_IO.New_line;

     when  STORAGE_ERROR =>

       Text_IO.New_line;

       Text_IO.Put("Storage_error in suremsl State_machine.");

       Text_IO.New_line;

     when  others =>

       Text_IO.New_line;

       Text_IO.Put("Exception in suremsl State_machine.");

       Text_IO.New_line;

end Transition_driver;

Figure 3.2.2l Ada body source code for SUREMSL. 

This code implements the state machine with a software array. This code is found in file suremsl_.ada.

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                     CSCI_TITLE                                 

--                  PACKAGE SPECIFICATION                         

--                    CSC Transform                         

--  DESCRIPTION:                                                  

--    This package specification provides the interface to  

--    package suremsl. suremsl implements a state 

--    machine composed of 4 inputs, 4 states and 

--    1 outputs.  

--    The procedure Transition calculates the next state

--    based upon the inputs and the present value of State. 

-- 

--    this is dane's note on safemsl.   

-- 

--    The procedure Transition calculates the next state

--    based upon the inputs and the present value of State. 

--    The procedure Initialize reads from a file named suremsl.tfm

--    the values of an array needed to calculate the new value of State. 

--    The value of State must be initialized and maintained by

--    each caller.

-- 

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0      5/17/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

package suremsl is

    Number_inputs                : constant := 4;

    Number_outputs               : constant := 1;

    Number_states                : constant := 4;

    subtype Input_range          is integer range 0..(Number_inputs - 1);

    subtype Output_range         is integer range 0..(Number_outputs - 1); 

    subtype Index_range          is integer range 0..1; 

    subtype State_type           is integer range 0..(Number_states - 1);

    type Input_type              is array(Input_range) of integer range Index_range; 

    type Output_type             is array(Output_range) of integer range Index_range; 

procedure Transition(Input                    : in     Input_type ;

                     State                    : in out State_type;

                     Outputs                  :    out Output_type);

end suremsl;

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                       CSCI_TITLE                               

--                      PACKAGE BODY                              

--                    CSC Transition                         

--  DESCRIPTION:                                                  

--    This package body implements state machine  

--    suremsl.  suremsl is composed of 

--    4 inputs, 4 states and 1 outputs.

--    Two procedures are included in this package body.

--    They are Transition and Initialize. 

--    Initialize reads values from a file suremsl.tfm

--    the values needed for initialization of array Transform. 

--      Transition will output a new state value based upon the inputs

--      and the present state.  The Transition state machine is implemented with 

--      a software array. 

-- 

--  ABSTRACT:                                                     

--    none                                                        

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0      5/17/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

with Text_IO; 

package body suremsl is

    package Int_IO               is new Text_IO.integer_IO(integer); 

    Max_number_indexes           : constant := 6;

    Number_state_bits            : constant := 2;

    Transform_limit              : constant := (2**(Max_number_indexes ));

    subtype Number_indexes_range is integer range 0..Max_number_indexes; 

    subtype Transform_range      is integer range Transform_limit; 

    type Index_transform_type    is array(Number_indexes_range) of integer range Index_range;

    type Input_array_type        is array(Input_range) of Boolean; 

    type Transform_type          is array(Index_range,Index_range,Index_range,Index_range,Index_range,Index_range) of Transform_range;

    Transform                    : Transform_type;

procedure Transition(Input                    : in     Input_type ;

                     State                    : in out State_type;

                     Outputs                  :    out Output_type)

is

    State_field_upper_cnt        : constant := (Number_state_bits - 1);

    Input_field_lower_cnt        : constant := Number_state_bits;

    Input_field_upper_cnt        : constant := (Max_number_indexes - 1);

    Index_transform              : Index_transform_type := (others => 0);

    Index_cnt                    : integer              := 0; 

begin -- Transition

    For Index_cnt in 0..State_field_upper_cnt loop

        Index_transform(Index_cnt) := (State / (2**Index_cnt) rem 2);

    end loop; 

    For Index_cnt in Input_field_lower_cnt..Input_field_upper_cnt loop

        Index_transform(Index_cnt) := Input(Index_cnt - Number_state_bits);

    end loop; 

    State

    :=

        Transform(

                  Index_transform(0),

                  Index_transform(1),

                  Index_transform(2),

                  Index_transform(3),

                  Index_transform(4),

                  Index_transform(5))

        rem Number_states;

    For Index_cnt in 0..State_field_upper_cnt loop

        Index_transform(Index_cnt) := (State / (2**Index_cnt) rem 2);

    end loop; 

    For Index_cnt in Outputs'range loop

        If ((Transform(

                     Index_transform(0),

                     Index_transform(1),

                     Index_transform(2),

                     Index_transform(3),

                     Index_transform(4),

                     Index_transform(5))

           / 2**(Index_cnt + Number_state_bits) rem 2) /= 0) then

            Outputs(Index_cnt) := 1;

        else

            Outputs(Index_cnt) := 0;

        end if;

    end loop;

end Transition; 

procedure Initialize is

    Number_combinations          : constant := (2**Max_number_indexes); 

    Combination_cnt              : integer              := 0;

    Index_transform              : Index_transform_type := (others => 0);

    Index_cnt                    : integer              := 0; 

    File_transform               : Text_IO.File_type;

    File_in                      : Text_IO.File_mode := Text_IO.In_file;

    Transform_string             : String(1..11) := "suremsl.tfm";

begin -- Initialize

    Text_IO.Open(File_transform,Text_IO.In_file,Transform_string);

    For Combination_cnt in 0..Number_combinations loop

        For Index_cnt in 0..Max_number_indexes loop

            Index_transform(Index_cnt) := (Combination_cnt/(2**Index_cnt))rem 2;

        end loop; 

        Int_IO.Get(File_transform,Transform(

                                              Index_transform(0),

                                              Index_transform(1),

                                              Index_transform(2),

                                              Index_transform(3),

                                              Index_transform(4),

                                              Index_transform(5)));

    end loop;  

end Initialize;

begin -- suremsl

    Initialize;

end suremsl;

3.2.3 Complex Missile Launcher. (CPLXMSL)

The complex missile launcher example is an actual launcher used for shipboard defense.  Since any design errors would leave the ship undefended, survival of the ship during an attack depends upon proper operation of the state machine, and proper operation must be proven correct.  Specification of the machine must be complete. The original specification for the launcher is shown in figure 3.2.3.

Inputs are: warm-up (WARMUP), dud-eject (DUDEJ), slew (SLEW), load (LOAD) and fire (FIRE). The twelve valid states are idle (IDLE), loading missiles (LOADM), loading missiles awaiting to dud-eject (LOADWD), dud-ejecting missile (DUDEJM), loading missiles waiting to slew (LOADWS), slewing (SLEW), slewing to load missiles (SLEWLM), slewing to dud-eject position (SLEWDP), firing missiles (FIRE), firing missiles waiting to load (FIREWL), firing waiting to dud-eject (FIREWD), and firing waiting to slew (FIREWS). There are four invalid states (INVLNN) where NN is the number of the assigned state.

This example also serves as a comparison between a state machine implemented with if-then-else logic in software and a state machine implemented with the LDT.  The if-then-else implementation was an actual launcher simulation developed under contract to the Navy.  Changes in the if-then-else software implementation were cumbersome and took days to implement and verify, whereas changes to the LDT implementation took only a few minutes and code generation was automatic.

The following is the original description of the missile launcher:

Each RAIL has the following attributes:


a. RAIL.NUMBER: The number of the rail to be considered.


b. DUD.ELEVATION: The elevation at which the launch must 


be to dud-eject missiles from this rail.


c. DUD.BEARING: The bearing relative to the ship at which


the launcher must be to dud-eject missiles from this rail.

2. WEAPON.CLUSTER: WEAPON.CLUSTERS belong to a WEAPON.CLUSTER.SET which is an unranked set. The set is initialized by input data. It is updated when missiles are loaded, fired, or dud-ejected to keep a current inventory of missiles.  WEAPON.CLUSTERs are not removed from the WEAPON.CLUSTER.SET. Each WEAPON.CLUSTER has the following attributes:


a. TYPE: The name of this missile type. The name must correspond to the name of a MISSILE.TYPE (see MISSILE.TYPE write-up) and the name of an INVENTORY in an FC.COMPUTER's INVENTORY.SETto be useful.


b. MAGAZINE: Number of missiles of this type not loaded at model initiation that, however, can be loaded.


c. LOADOUT: The number of missile that are loaded in the launcher at model initiation. All these missile start cold (not warm).


d. INTER.SALVO.TIME: The time in seconds between the firing of a missile of this type and the next missile. The launcher is inoperative during this time. It is the same wait time even if the missile duds.

ROUTINES CALLED

1. REACTIVE

2. WARM.UP

LOGIC DESCRIPTION

Since more than one message may arrive at the launcher at the same time, the messages must be processed in priority order.  Since the warm-up is independent of all other launcher functions, and is instantaneous from the launcher's viewpoint (the launcher only initiates missile warm-up), the WARM-UP message is given the highest priority. The DUD-EJECT message is given next highest priority since it has precedence over all other launcher functions.  The SLEW and RELEASE message are both slew type commands and have equal priority with the LOAD command. The launcher arbitrary gives the LOAD precedence and according to modeling conventions, SLEW is therefore of higher priority than LOAD. FIRE has the lowest priority requiring all other launcher functions to cease before it can be accomplished.

For a complete description of the launcher response to various messages, a state transition matrix is constructed.  However, for clarity the launcher response to each message when the launcher starts in the idle state and gets no messages until it returns to the idle state will be described. Upon receipt of a SLEW (RELEASE) message the launcher slews to the position requested in the message (stow coordinates) and returns to the idle state. If DESIRED.ELEVATION exceeds MAX.LCHR.ELEVATION then the launcher slews to MAX.LCHR.ELEVATION. For a LOAD, the launcher slews to the load position, loads the requested number of missiles of a given type, and becomes idle. The FIRE causes the launcher to fire the requested number of missiles of a given type or a missile on a specified rail and the missile becomes idle.  The DUD-EJECT causes the launcher to slew to the dud-eject postion for the given rail, dud-eject the missile on the rail, slew to the stow position for the given rail, and finally become idle. The WARM-UP causes initiation of the requested number of missiles of a given type independent of the state of the launcher. If the message requests actions of the launcher on missiles of the wrong type or too large a number of missiles the function is attempted but only performed within the number of missile of a type available.

The launcher can be any one of 12 states. Incoming messages and task completion can change the state of the launcher. In the absence of messages, the launcher will always end up in an idle state (this may be a synch position). The states of the launcher are:


 0: Idle






(IDLE)


 1: Slewing






(SLEW)


 2: Firing missiles




(FIRE)


 3: Firing waiting to slew



(FIREWS)


 4: Loading missiles




(LOADM)


 5: Dud-ejecting missiles



(DUDEJM)


 6: Firing waiting to dud-eject


(FIREWD)


 7: Slewing to dud-eject missiles


(SLEWDP)

  
 8: Firing missiles waiting to load


(FIREWL)


 9: Loading missiles waiting to slew

(LOADWS)


12: Slewing to load missiles



(SLEWLM)


15: Loading missiles waiting to dud-eject

(LOADWD)

The firing sequence essentially queues the slew, dud-eject, and the load messages while it completes.  The load sequence queues a slew or dud-eject message with the latter being given precedence. Without messages to change the present state of the launcher, the launcher proceeds to the idle state (0) by the following state changes which occur at task completion.

 8 -> 12 -> 4 -> 0

 6 ->  7 -> 5 -> 1 -> 0

 3 ->  1 -> 0 

 9 ->  1 -> 0

15 ->  7 -> 5 -> 1 -> 0

 2 ->  0

For example, the first sequence starts off with the launcher firing missiles but waiting to load.  Upon firing completion, the launcher slews to the load position. Upon slew completion, the launcher loads the missiles. And upon loading, the launcher becomes idle. The launcher responds to messages in priority order as follows:






Launcher State





0  4  15  5  9  1  12  7  2  8  6  3


1. WARM-UP

State Independent


2. DUD-EJECT
7 15  15 (5)15  7   7  7  6  6  6  6


3. SLEW

1  9 (15)(5) 9  1   1 (7) 3  3 (6) 3


4. LOAD  
     12 (4)(15)(5) 4*12  12 (7) 8 (6)(6)(3)


5. FIRE

2 (4)(15)(5)(9)(1)(12)(7)(2)(8)(6)(3)



* ignore message but make state transition


    ( ) ignore message with no state transition

Since there are never any messages left in the queue after processing the queue, the messages in the queue must have arrived at the same time. The messages must be processed in the above priority order (e.g., process all WARM-UP messages, then all DUD-EJECT messages, etc.). when the launcher gets simultaneously activated by task completion and message arrival, it will always respond to the task completion making a state transition before processing the message queue. Note that there is a correspondence between the amount of times the launcher would ignore a message and the priority of the message (direct inverse relationship).

NOTES/WARNINGS/LIMITATIONS/ASSUMPTIONS

The launcher will not unload missiles as many rail launchers can; therefore, good loaded missiles of an incorrect type will have to be dud-ejected to get the missiles of the correct type loaded. There is no provision for the module to eject an incorrect missile type to accommodate a different missile type.

The launcher gives no indication that it has failed to perform a task only that it has successfully completed a task. Due to physical constraints, the launcher may only perform a portion of the function intended (i.e, loads only one missile instead of three because of inventory constraints)

If the launcher is ordered to fire a salvo of more missiles that it has rails, the launcher will hang up. The simulation run will not stop, however, the launcher will fail to fire any subsequent missiles.

The launcher broadcasts all message and receives messages from any node process linked to it.  

Figure 3.2.3 Specification of CPLXMSL launcher.

3.3 Controller Using Relays. (TIMER)

This shows that the tool can be used to specify the action of any binary system, in this case, a controller composed of three single pole double throw relays and two timers.

3.4 Cruise Control. (CRUISE)

This is a re-implementation of the cruise control problem contained in section 8, figure B-4 of SPC's ADARTS class workbook (Reference 1).  It illustrates the ability of the LDT to reduce the number of states over other state machine representations.  In the ADARTS example, eight states are shown to implement the state machine.  The LDT, however, uses four states. The smaller number of states is due in part to LDT's ability to account for the combination of inputs necessary for a transition.

Figure 3.4a Cruise Control Example - Figure B-4 from ADARTS Workbook.

          _________          _________

         |         | Trans1 |         |

         |  Init   |------->|  Idle   |

         |_________|<-------|_________|

            |  ^  ^  Trans6   ^   ^       

            |  |  |______    /    |     

            |  | Trans8  \  /     |Trans2

      Trans3|  |Trans7    \/      |  

          __V__|___ Trans4/\ _____|____

         |         |_____/  |         |

         |  Accel  |        |  Cruise |

         |_________|<-------|_________|

                     Trans5 

Trans1 = not Engine.

Trans2 = not Engine.

Trans3 = Engine and Const.

Trans4 = not Engine.

Trans5 = Engine and Resume and not Brake.

Trans6 = Engine.

Trans7 = Engine and Brake.

Trans8 = Engine and Brake.

      Figure 3.4b A State Transition Diagram Example.

Figure 3.4c Cruise Control Example Calling Routine.

--                  SECURITY CLASSIFICATION                    

-- *********************************************************   

--                     CSCI_TITLE                              

--                 PROCEDURE SPECIFICATION                     

--                    CSC Transition_driver                                 

--  DESCRIPTION:                                               

--    This procedure is an example driver for procedure 

--    Transition found in state machine package cruise.

--    The procedure asks the operator for 5 input values.

--    The procedure then displays the next state to which the 

--    state machine has transitioned and the 4

--    output values for that state.

--    The value of Present_state is initialized and maintained by

--    this driver.

--    INPUTS:                                                    

--      Input number 0 named Engine                                 

--      Input number 1 named Const                                 

--      Input number 2 named Resume                                 

--      Input number 3 named Brake                                 

--      Input number 4 named Reached                                 

--    OUTPUTS:                                                    

--      Output number 0 named Out0                                 

--      Output number 1 named Out1                                 

--      Output number 2 named Out2                                 

--      Output number 3 named Out3                                 

--    STATES:                                                    

--      State number 0 named Init                                 

--      State number 1 named Idle                                 

--      State number 2 named Accel                                 

--      State number 3 named Cruise                                 

--  REFERENCES:                                                

--    none                                                     

--  EXCEPTION HANDLING AND ERROR PROCESSING:                   

--    CONSTRAINT_ERROR

--    NUMERIC_ERROR

--    STORAGE_ERROR

--    others

--  LIMITATIONS:                                               

--    none                                                     

--  WAIVERS:                                                   

--    none                                                     

--  MODIFICATIONS:                                             

--    NUMBER      DATE      RSE   DESCRIPTION                  

--     1.0      5/17/1993                                         

--  CODE CLASSIFICATION:                                       

--       Not yet given a classification.                       

-- *********************************************************   

with cruise;

with Text_IO;

procedure Transition_driver is 

    package Int_IO is new Text_IO.integer_IO(integer); 

    Input_field_upper_cnt     : constant := 4;

    Init                      : constant := 0;

    Idle                      : constant := 1;

    Accel                     : constant := 2;

    Cruise                    : constant := 3;

    Input                     : cruise.Input_type;

    Outputs                   : cruise.Output_type;

    Input_cnt                 : integer;

    State_machine_valid       : Boolean;

    Present_state             : cruise.State_type := 0;

begin  -- Transition_driver

    State_machine_valid := True;

    While State_machine_valid loop

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(0);

        Text_IO.Put(" named Engine");

        Text_IO.Put(" ");

        Int_IO.Get(Input(0));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(1);

        Text_IO.Put(" named Const");

        Text_IO.Put(" ");

        Int_IO.Get(Input(1));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(2);

        Text_IO.Put(" named Resume");

        Text_IO.Put(" ");

        Int_IO.Get(Input(2));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(3);

        Text_IO.Put(" named Brake");

        Text_IO.Put(" ");

        Int_IO.Get(Input(3));

        Text_IO.New_line;

        Text_IO.Put("Enter desired value of input number ");

        Int_IO.Put(4);

        Text_IO.Put(" named Reached");

        Text_IO.Put(" ");

        Int_IO.Get(Input(4));

        Text_IO.New_line;

        cruise.Transition(

                           Input => Input,

                           State => Present_state,

                           Outputs => Outputs);

    case Present_state is

        when Init => 

            -- Note for Init state: --

            --    This is the initialization state. Values are initialized

            --       in this state.   

            -- *** Place code for Init here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named Init ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named Out0 := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(1) named Out1 := ");

            Int_IO.Put(Outputs(1));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(2) named Out2 := ");

            Int_IO.Put(Outputs(2));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(3) named Out3 := ");

            Int_IO.Put(Outputs(3));

            Text_IO.New_line;

            Text_IO.New_line;

            --  This state will transition to state 0 named Init when 

            --       Engine and not Const    

            --  This state will transition to state 1 named Idle when  not Engine    

            --  This state will transition to state 2 named Accel when 

            --       Engine and Const or  Const and Resume and Brake and not Reached    

            --  There are no transitions specified from this state to

            --       state number 3 named Cruise.     

        when Idle => 

            -- Note for Idle state: --

            --    State 1 is idle. No action is taken.   

            -- *** Place code for Idle here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named Idle ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named Out0 := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(1) named Out1 := ");

            Int_IO.Put(Outputs(1));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(2) named Out2 := ");

            Int_IO.Put(Outputs(2));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(3) named Out3 := ");

            Int_IO.Put(Outputs(3));

            Text_IO.New_line;

            Text_IO.New_line;

            --  This state will transition to state 0 named Init when 

            --       Engine or  Const and Resume and Brake and not Reached    

            --  This state will transition to state 1 named Idle when  not Engine    

            --  There are no transitions specified from this state to

            --       state number 2 named Accel.     

            --  There are no transitions specified from this state to

            --       state number 3 named Cruise.     

        when Accel => 

            -- Note for Accel state: --

            --    This is the acceleration state. Acceleration is activated.   

            -- *** Place code for Accel here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named Accel ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named Out0 := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(1) named Out1 := ");

            Int_IO.Put(Outputs(1));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(2) named Out2 := ");

            Int_IO.Put(Outputs(2));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(3) named Out3 := ");

            Int_IO.Put(Outputs(3));

            Text_IO.New_line;

            Text_IO.New_line;

            --  This state will transition to state 0 named Init when 

            --       Engine and Brake    

            --  This state will transition to state 1 named Idle when  not Engine    

            --  This state will transition to state 2 named Accel when 

            --       Engine and not Brake    

            --  There are no transitions specified from this state to

            --       state number 3 named Cruise.     

        when Cruise => 

            -- Note for Cruise state: --

            --    This is the cruise state.  Speed is maintained.   

            -- *** Place code for Cruise here. ***   

            Text_IO.Put("System now in state number ");

            Int_IO.Put(Present_state);

            Text_IO.Put(" named Cruise ");

            Text_IO.New_line;

            Text_IO.Put("Outputs(0) named Out0 := ");

            Int_IO.Put(Outputs(0));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(1) named Out1 := ");

            Int_IO.Put(Outputs(1));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(2) named Out2 := ");

            Int_IO.Put(Outputs(2));

            Text_IO.New_line;

            Text_IO.New_line;

            Text_IO.Put("Outputs(3) named Out3 := ");

            Int_IO.Put(Outputs(3));

            Text_IO.New_line;

            Text_IO.New_line;

            --  This state will transition to state 0 named Init when 

            --       Engine and Brake    

            --  This state will transition to state 1 named Idle when  not Engine    

            --  This state will transition to state 2 named Accel when 

            --       Engine and Resume and not Brake    

            --  This state will transition to state 3 named Cruise when 

            --       Engine and not Resume and not Brake    

          when others =>

              -- *** Place code for undefined states here. ***   

              State_machine_valid := False;

      end case;

  end loop;

     exception

     when  CONSTRAINT_ERROR =>

       Text_IO.New_line;

       Text_IO.Put("Constraint_error in cruise State_machine.");

       Text_IO.New_line;

     when  NUMERIC_ERROR =>

       Text_IO.New_line;

       Text_IO.Put("Numeric_error in cruise State_machine.");

       Text_IO.New_line;

     when  STORAGE_ERROR =>

       Text_IO.New_line;

       Text_IO.Put("Storage_error in cruise State_machine.");

       Text_IO.New_line;

     when  others =>

       Text_IO.New_line;

       Text_IO.Put("Exception in cruise State_machine.");

       Text_IO.New_line;

end Transition_driver;
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Figure 3.4d Cruise Control Example Body.

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                     CSCI_TITLE                                 

--                  PACKAGE SPECIFICATION                         

--                    CSC Transform                         

--  DESCRIPTION:                                                  

--    This package specification provides the interface to  

--    package cruise. cruise implements a state 

--    machine composed of 5 inputs, 4 states and 

--    4 outputs.  

--    The procedure Transition calculates the next state

--    based upon the inputs and the present value of State. 

-- 

--    cruise is an example taken from the ADARTS workbook.

-- 

--    The procedure Transition calculates the next state

--    based upon the inputs and the present value of State. 

--    The procedure Initialize reads from a file named cruise.tfm

--    the values of an array needed to calculate the new value of State. 

--    The value of State must be initialized and maintained by

--    each caller.

-- 

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0      5/17/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

package cruise is

    Number_inputs                : constant := 5;

    Number_outputs               : constant := 4;

    Number_states                : constant := 4;

    subtype Input_range          is integer range 0..(Number_inputs - 1);

    subtype Output_range         is integer range 0..(Number_outputs - 1); 

    subtype Index_range          is integer range 0..1; 

    subtype State_type           is integer range 0..(Number_states - 1);

    type Input_type              is array(Input_range) of integer range Index_range; 

    type Output_type             is array(Output_range) of integer range Index_range; 

procedure Transition(Input                    : in     Input_type ;

                     State                    : in out State_type;

                     Outputs                  :    out Output_type);

end cruise;

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                       CSCI_TITLE                               

--                      PACKAGE BODY                              

--                    CSC Transition                         

--  DESCRIPTION:                                                  

--    This package body implements state machine  

--    cruise.  cruise is composed of 

--    5 inputs, 4 states and 4 outputs.

--    Two procedures are included in this package body.

--    They are Transition and Initialize. 

--    Initialize reads values from a file cruise.tfm

--    the values needed for initialization of array Transform. 

--      Transition will output a new state value based upon the inputs

--      and the present state.  The Transition state machine is implemented with 

--      a software array. 

-- 

--  ABSTRACT:                                                     

--    none                                                        

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0      5/17/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

with Text_IO; 

package body cruise is

    package Int_IO               is new Text_IO.integer_IO(integer); 

    Max_number_indexes           : constant := 7;

    Number_state_bits            : constant := 2;

    Transform_limit              : constant := (2**(Max_number_indexes ));

    subtype Number_indexes_range is integer range 0..Max_number_indexes; 

    subtype Transform_range      is integer range Transform_limit; 

    type Index_transform_type    is array(Number_indexes_range) of integer range Index_range;

    type Input_array_type        is array(Input_range) of Boolean; 

    type Transform_type          is array(Index_range,Index_range,Index_range,Index_range,Index_range,Index_range,Index_range) of Transform_range;

    Transform                    : Transform_type;

procedure Transition(Input                    : in     Input_type ;

                     State                    : in out State_type;

                     Outputs                  :    out Output_type)

is

    State_field_upper_cnt        : constant := (Number_state_bits - 1);

    Input_field_lower_cnt        : constant := Number_state_bits;

    Input_field_upper_cnt        : constant := (Max_number_indexes - 1);

    Index_transform              : Index_transform_type := (others => 0);

    Index_cnt                    : integer              := 0; 

begin -- Transition

    For Index_cnt in 0..State_field_upper_cnt loop

        Index_transform(Index_cnt) := (State / (2**Index_cnt) rem 2);

    end loop; 

    For Index_cnt in Input_field_lower_cnt..Input_field_upper_cnt loop

        Index_transform(Index_cnt) := Input(Index_cnt - Number_state_bits);

    end loop; 

    State

    :=

        Transform(

                  Index_transform(0),

                  Index_transform(1),

                  Index_transform(2),

                  Index_transform(3),

                  Index_transform(4),

                  Index_transform(5),

                  Index_transform(6))

        rem Number_states;

    For Index_cnt in 0..State_field_upper_cnt loop

        Index_transform(Index_cnt) := (State / (2**Index_cnt) rem 2);

    end loop; 

    For Index_cnt in Outputs'range loop

        If ((Transform(

                     Index_transform(0),

                     Index_transform(1),

                     Index_transform(2),

                     Index_transform(3),

                     Index_transform(4),

                     Index_transform(5),

                     Index_transform(6))

           / 2**(Index_cnt + Number_state_bits) rem 2) /= 0) then

            Outputs(Index_cnt) := 1;

        else

            Outputs(Index_cnt) := 0;

        end if;

    end loop;

end Transition; 

procedure Initialize is

    Number_combinations          : constant := (2**Max_number_indexes); 

    Combination_cnt              : integer              := 0;

    Index_transform              : Index_transform_type := (others => 0);

    Index_cnt                    : integer              := 0; 

    File_transform               : Text_IO.File_type;

    File_in                      : Text_IO.File_mode := Text_IO.In_file;

    Transform_string             : String(1..10) := "cruise.tfm";

begin -- Initialize

    Text_IO.Open(File_transform,Text_IO.In_file,Transform_string);

    For Combination_cnt in 0..Number_combinations loop

        For Index_cnt in 0..Max_number_indexes loop

            Index_transform(Index_cnt) := (Combination_cnt / (2**Index_cnt)) rem 2;

        end loop; 

        Int_IO.Get(File_transform,Transform(

                                              Index_transform(0),

                                              Index_transform(1),

                                              Index_transform(2),

                                              Index_transform(3),

                                              Index_transform(4),

                                              Index_transform(5),

                                              Index_transform(6)));

    end loop;  

end Initialize;

begin -- cruise

    Initialize;

end cruise;
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3.5 Traffic Signal. (TRAFIC)

This example implements a traffic signal controller.  It is an example used in the Monolithic Memories PALASM reference manual (Reference 14).  An example PALASM output from the LDT is shown.  The output has yet to be tested on a PALASM compiler.  Looking at the long files necessary to implement the PALASM state machine, where each line of the file can contain multiple errors, and the need for the non-interactive PALASM debugger, the advantages of generating the PALASM specification via LDT can be seen. Explanation of the controller is given in figure 3.5b.

Figure 3.5a PAL Device Handbook Traffic Control Example.

Figure 3.5b PALASM source file.

     PALASM FILE for state machine trafic

TITLE            STATE_MACHINE trafic

PATTERN          X0000

REVISION         0

AUTHOR           NAME

COMPANY          LASC

CHIP             2_BIT_CTR           PAL16R4

;PINS    1     2     3     4      5        6    7    8    9    10

        CLK   FUEL COMPTR  AIMED  BUTTON   NC   NC   NC   NC   GND

;PINS    11  12   13   14   15   16   17   18   19   20

        FIRE NC   NC   NC   NC   NC   NC   NC   NC   VCC

;    This procedure implements a state machine of 2 inputs, 

;    8 states and 6 outputs.  

;    INPUTS:                                                    

;      Input number 0 named sen1                                 

;      Input number 1 named sen2

;    OUTPUTS:                                                    

;      Output number 0 named red1                                 

;      Output number 1 named yel1                                 

;      Output number 2 named grn1                                 

;      Output number 3 named red2                                 

;      Output number 4 named yel2                                 

;      Output number 5 named grn2                                 

;    STATES:                                                    

;      State number 0 named s0

;      State number 1 named s1

;      State number 2 named s2

;      State number 3 named s3

;      State number 4 named s4

;      State number 5 named s5

;      State number 6 named s6

;      State number 7 named s7

;Note for s0 state: 

;S0 state note.   

;

; This state will transition to state 0 named s0 when  sen1

; and not sen2    

; This state will transition to state 1 named s1 when  not

; sen1 and not sen2 or  sen1 and sen2    

; There are no transitions specified from this state to

; state number 2 named s2.     

; This state will transition to state 3 named s3 when  not

; sen1 and sen2    

; There are no transitions specified from this state to

; state number 4 named s4.     

; There are no transitions specified from this state to

; state number 5 named s5.     

; There are no transitions specified from this state to

; state number 6 named s6.     

; There are no transitions specified from this state to

; state number 7 named s7.     

;Note for s1 state: 

;State 1 note.   

;

; There are no transitions specified from this state to

; state number 0 named s0.

; There are no transitions specified from this state to

; state number 1 named s1.     

; This state will transition to state 2 named s2 when  1    

; There are no transitions specified from this state to

; state number 3 named s3.     

; There are no transitions specified from this state to

; state number 4 named s4.     

; There are no transitions specified from this state to

; state number 5 named s5.     

; There are no transitions specified from this state to

; state number 6 named s6.     

; There are no transitions specified from this state to

; state number 7 named s7.     

;Note for s2 state: 

;State 2 note.   

;

; There are no transitions specified from this state to

; state number 0 named s0.     

; There are no transitions specified from this state to

; state number 1 named s1.

; There are no transitions specified from this state to

; state number 2 named s2.     

; This state will transition to state 3 named s3 when  1    

; There are no transitions specified from this state to

; state number 4 named s4.     

; There are no transitions specified from this state to

; state number 5 named s5.     

; There are no transitions specified from this state to

; state number 6 named s6.     

; There are no transitions specified from this state to

; state number 7 named s7.     

;Note for s3 state: 

;State3 note.   

;

; There are no transitions specified from this state to

; state number 0 named s0.     

; There are no transitions specified from this state to

; state number 1 named s1.     

; There are no transitions specified from this state to

; state number 2 named s2.

; There are no transitions specified from this state to

; state number 3 named s3.     

; This state will transition to state 4 named s4 when  1    

; There are no transitions specified from this state to

; state number 5 named s5.     

; There are no transitions specified from this state to

; state number 6 named s6.     

; There are no transitions specified from this state to

; state number 7 named s7.     

;Note for s4 state: 

;State 4 note.   

;

; There are no transitions specified from this state to

; state number 0 named s0.     

; There are no transitions specified from this state to

; state number 1 named s1.     

; There are no transitions specified from this state to

; state number 2 named s2.     

; There are no transitions specified from this state to

; state number 3 named s3.

; This state will transition to state 4 named s4 when  not

; sen1 and sen2    

; This state will transition to state 5 named s5 when  not

; sen1 and not sen2 or  sen1 and sen2    

; There are no transitions specified from this state to

; state number 6 named s6.

; This state will transition to state 7 named s7 when  sen1

; and not sen2    

;Note for s5 state: 

;State 5 note.   

;

; There are no transitions specified from this state to

; state number 0 named s0.     

; There are no transitions specified from this state to

; state number 1 named s1.     

; There are no transitions specified from this state to

; state number 2 named s2.     

; There are no transitions specified from this state to

; state number 3 named s3.     

; There are no transitions specified from this state to

; state number 4 named s4.     

; There are no transitions specified from this state to

; state number 5 named s5.     

; This state will transition to state 6 named s6 when  1    

; There are no transitions specified from this state to

; state number 7 named s7.

;Note for s6 state: 

;State 6 note.   

;

; There are no transitions specified from this state to

; state number 0 named s0.     

; There are no transitions specified from this state to

; state number 1 named s1.     

; There are no transitions specified from this state to

; state number 2 named s2.     

; There are no transitions specified from this state to

; state number 3 named s3.     

; There are no transitions specified from this state to

; state number 4 named s4.     

; There are no transitions specified from this state to

; state number 5 named s5.     

; There are no transitions specified from this state to

; state number 6 named s6.     

; This state will transition to state 7 named s7 when  1    

;Note for s7 state:

;State 7 note.   

;

; This state will transition to state 0 named s0 when  1    

; There are no transitions specified from this state to

; state number 1 named s1.     

; There are no transitions specified from this state to

; state number 2 named s2.     

; There are no transitions specified from this state to

; state number 3 named s3.     

; There are no transitions specified from this state to

; state number 4 named s4.     

; There are no transitions specified from this state to

; state number 5 named s5.     

; There are no transitions specified from this state to

; state number 6 named s6.

; There are no transitions specified from this state to

; state number 7 named s7.     

STATE                   ;Specifies state machine format.

MOORE_MACHINE           ;Outputs a function of states only.

DEFAULT_BRANCH s0

;ASSIGNMENTS

S0 = S1 = S2 = S3 = S4 = S5 = S6 = S7 = ;STATE TRANSITIONS AND OUTPUTS

S0 =

/ S0 /  * / sen1/  * / sen2

 + / S0 /  * S1

 + / S0 /  * S2 /  * / sen2

 + / S0 /  * / S2 /  * sen2

 + / S0 /  * sen1/  * sen2

S1 =

S0 /  * / S1

 + / S0 /  * S1

 + / S1 /  * S2 /  * sen1/  * / sen2

 + / S1 /  * / S2 /  * / sen1/  * sen2

S2 =

S0 /  * S1 /  * / S2

 + / S1 /  * S2

 + / S0 /  * S2

;Output equations

red1 :=  /S0 *  /S1 *  S2 +  S0 *  /S1 *  S2 + /S0 *  S1 *  S2 + S0 *  S1 *  S2

yel1 :=  S0 *  S1 *  /S2

grn1 :=  /S0 *  /S1 *  /S2 + S0 *  /S1 *  /S2  /S0 *  S1 *  /S2

red2 :=  /S0 *  /S1 *  /S2 + S0 *  /S1 *  /S2 + /S0 *  S1 *  /S2 + S0 *  S1 *  /S2

yel2 :=  S0 *  S1 *  S2

grn2 :=  /S0 *  /S1 *  S2 + S0 *  /S1 *  S2 + /S0 *  S1 *  S2

; No simulation is generated. 

; End of PALASM code. 

This page intentionally left blank.

3.6 Water Tank Controller. (TANK)

This is a trivial example, but it demonstrates how the tool can lead the operator to a simpler design.  The simplified design in this case becomes a flip flop whose input is the water level, HiWtr and LoWtr, and whose output turns the pump on or off.

3.7 Combinational Logic (HEX_DEC).

This example demonstrates LDT's ability to generate non-sequential Boolean logic.  This is combinational, rather than sequential logic.  It was specified as combinational logic by indicating 0 states in the operator entry ('o') option from the main menu.  Combinational logic is differentiated from sequential logic by selecting 0 for the number of states when entering the specification.  If the number of states is 0, the state map is not shown, only combination maps.  The lowest combination map level, rather than requiring a next state for its transition, requires a value for the outputs for that combination.

HEX_DEC has four inputs and five outputs.  As an illustration, it converts hexidecimal to decimal where the input is hexidecimal and the output is broken into two fields, a least significant decimal digit with four bits and a most significant digit with 1 bit.  This logic is implemented with a software array.

Figure 3.7a HEX_DEC calling routine source code listing.

--                  SECURITY CLASSIFICATION                    

-- *********************************************************   

--                     CSCI_TITLE                              

--                 PROCEDURE SPECIFICATION                     

--                    CSC hex_dec                                 

--  DESCRIPTION:                                               

--    This procedure implements combinational logic with 4 inputs, 

--    and 5 outputs.  

--    INPUTS:                                                   

--      Input number 0 named hex0                                 

--      Input number 1 named hex1                                 

--      Input number 2 named hex2                                 

--      Input number 3 named hex3                                 

--    OUTPUTS:                                                    

--      Output number 0 named dec0b0                                 

--      Output number 1 named dec0b1                                 

--      Output number 2 named dec0b2                                 

--      Output number 3 named dec0b3                                 

--      Output number 4 named dec1b0                                 

--  REFERENCES:                                                

--    none                                                     

--  EXCEPTION HANDLING AND ERROR PROCESSING:                   

--    none                                                     

--  LIMITATIONS:                                               

--    none                                                     

--  WAIVERS:                                                   

--    none                                                     

--  MODIFICATIONS:                                             

--    NUMBER      DATE      RSE   DESCRIPTION                  

--     1.0   5/5/1993                                         

--  CODE CLASSIFICATION:                                       

--       Not yet given a classification.                       

-- *********************************************************   

with Calendar;

with hex_dec_package;

with Text_IO;

procedure hex_dec is 

    package Int_IO is new Text_IO.integer_IO(integer); 

    Input     : hex_dec_package.Input_type;

    Outputs   : hex_dec_package.Output_type;

    Index_cnt : integer;

    State_machine_valid      : Boolean;

begin -- hex_dec

    State_machine_valid := True;

    While State_machine_valid loop

        For Input_cnt in Input'range loop

            Text_IO.Put("Enter desired value of input number ");

            Int_IO.Put(Input_cnt);

            Text_IO.Put(" ");

            Int_IO.Get(Input(Input_cnt));

            Text_IO.New_line;

        end loop;

      hex_dec_package.Initialize_hex_dec;

        hex_dec_package.hex_dec(Input,Outputs);

      Text_IO.Put("Outputs(0) := ");

      Int_IO.Put(Outputs(0));

      Text_IO.New_line;

      Text_IO.New_line;

      Text_IO.Put("Outputs(1) := ");

      Int_IO.Put(Outputs(1));

      Text_IO.New_line;

      Text_IO.New_line;

      Text_IO.Put("Outputs(2) := ");

      Int_IO.Put(Outputs(2));

      Text_IO.New_line;

      Text_IO.New_line;

      Text_IO.Put("Outputs(3) := ");

      Int_IO.Put(Outputs(3));

      Text_IO.New_line;

      Text_IO.New_line;

      Text_IO.Put("Outputs(4) := ");

      Int_IO.Put(Outputs(4));

      Text_IO.New_line;

      Text_IO.New_line;

     end loop; -- While State_machine_valid --

end hex_dec;

Figure 3.7b HEX_DEC body source code listing.

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                     CSCI_TITLE                                 

--                  PACKAGE SPECIFICATION                         

--                    CSC hex_dec_Package                         

--  DESCRIPTION:                                                  

--    This package specification implements combinational logic 

--    with 4 inputs, and 5 outputs.  

--    The interface to the procedure, as specified in this     

--    body is hex_dec. hex_dec generates outputs  

--    according to inputs. 

--    INPUTS:                                                     

-- 

--    hex_dec translates a hexadecimal number into a two digit

--     decimal number.   

-- 

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0  5/5/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

package hex_dec_package is

    Number_inputs      : constant := 4;

    Number_outputs     : constant := 5;

    subtype Input_range          is integer range 0..Number_inputs; 

    subtype Output_range         is integer range 0..Number_outputs; 

    subtype Index_range          is integer range 0..1; 

    type Input_type              is array(Input_range) of integer range Index_range; 

    type Output_type             is array(Output_range) of integer range Index_range; 

    procedure hex_dec(Input                    : in     Input_type ;

                      Outputs                  :    out Output_type);

    procedure Initialize_hex_dec;

end hex_dec_package;

--                  SECURITY CLASSIFICATION                       

-- ************************************************************   

--                       CSCI_TITLE                               

--                      PACKAGE BODY                              

--                    CSC hex_dec_Package                         

--  DESCRIPTION:                                                  

--    This package body implements combinational logic with 

--    4 inputs, 5 outputs. 

--    This body implements procedures hex_dec      

--    and Initialize_hex_dec. Initialize_hex_dec will

--    will initialize the software array. 

--  ABSTRACT:                                                     

--    none                                                        

--  REFERENCES:                                                   

--    none                                                        

--  EXCEPTION HANDLING AND ERROR PROCESSING:                      

--    none                                                        

--  LIMITATIONS:                                                  

--    none                                                        

--  WAIVERS:                                                      

--    none                                                        

--  MODIFICATIONS:                                                

--    NUMBER      DATE      RSE   DESCRIPTION                     

--     1.0  5/5/1993                                             

--  CODE CLASSIFICATION:                                          

--    Not yet given a classification.                             

-- ************************************************************   

with Text_IO; 

    package body hex_dec_package is

    package Int_IO is new Text_IO.Integer_IO(integer); 

    Transform_limit              : constant := (2**(Number_inputs));

    subtype Transform_range      is integer range Transform_limit; 

    type Input_array_type        is array(Input_range) of Boolean; 

    type Transform_type          is array(

                                           Input_range,

                                           Input_range,

                                           Input_range,

                                           Input_range)

                                             of Transform_range;

    Transform                    : Transform_type;

    Index_cnt                    : integer; 

    Combination_cnt              : integer;

procedure hex_dec(Input                    : in     Input_type ;

                  Outputs                  :    out Output_type)

is

    begin -- hex_dec

    For Index_cnt in Outputs'range loop

        If ((Transform(

                       Input(0),

                       Input(1),

                       Input(2),

                       Input(3))

           / 2**Index_cnt rem 2) /= 0) then

            Outputs(Index_cnt) := 1;

        else

            Outputs(Index_cnt) := 0;

        end if;

    end loop;

end hex_dec; 

procedure Initialize_hex_dec is

    Number_combinations         : constant := (2**Number_inputs); 

    subtype Combination_range   is integer range 0..Number_combinations;

    type File_Mode              is (In_file,InOut_File,Output_File);

    File_transform              : Text_IO.File_type;

    File_in                     : File_mode := In_file;

    Input                       : Input_type;

    Transform_string            : String(1..11) := "hex_dec.tfm";

begin -- Initialize_hex_dec

    Text_IO.Open(File_transform,Text_IO.In_file,Transform_string);

    For Combination_cnt in 0..Number_combinations loop

        For Index_cnt in Input'range loop

            If (((Combination_cnt / (2**Index_cnt)) rem 2) /= 0 ) then

                Input(Index_cnt) := 1;

            else

                Input(Index_cnt) := 0;

            end if;

        end loop; -- For Index_cnt   

        Int_IO.Get(File_transform,Transform(

                                            Input(0),

                                            Input(1),

                                            Input(2),

                                            Input(3)));

    end loop; -- For Combination_cnt   

end Initialize_hex_dec;

end hex_dec_package;
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3.8 Simulation of a JK flip flop. (FFJK76).

3.9 Circular Buffer Control.

(TBI)

3.10 Event Cluster - Sequence monitor.

(TBI)

3.11 VME bus model.

3.12 Test and Maintenance (TM) bus model.

(TBI)
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          Proprietary                        Section 4  User Manual

4.0 User Manual.

The following section explains LDT options.  Paragraphs marked TBI mean they are planned or in work, but are yet To Be Implemented.  Paragraphs marked TBT means they are implemented, but not yet tested, generally because of lack of a platform to test that function.

The LDT is menu driven. The following menu tree outlines LDT menu level options and operating modes. Indented lines signify a sublevel of the next-deepest line above it.  A menu may change depending upon whether a specification file is loaded or not, so not all options may appear at the same time.  This menu tree includes all options that will appear in that menu.  Escape is possible from all menus except the main menu, where only quit will exit from LDT.






Figure 4.0 TBD MENU TREE 

|- O: Enter size specifications for state machine.

|- F: Load a specification file.

|- I: Give names to Input and Output variables.

|- E: Edit this state machine or combinational logic.

   |- T: Go to transition map.

      |- B: Show Boolean equation of inputs for any transitions.

      |- M: Enter conditions for transition by boolean entry.

      |- N: Attach a note to this transition map for this state.

         |- A: Add further comment to existing note.

         |- D: Display this note.

         |- E: Erase this note.

         |- O: Overwrite existing note with a new note.     

         |- Q: Quit note option.

         |- ?: Get note help.

   |- N: Name this state.

   |- D; Set output bits for this state.

      |- 0: Enter a false condition for this output of this state.

      |- 1: Enter a true condition for this output of this state.

      |- ?: Get help for this option.

   |- Q: Quit.

   |- ?: State map menu help.

|- L: Run tutorial.

|- N: Enter note for this logic.

   |- A: Add to existing note.

   |- D: Display existing note.

   |- E: Erase existing note.

   |- O: Overwrite existing note.

   |- Q: Quit from this option.

   |- ?: Help for this option.

|- S: Save state machine.

|- G: Generate implementation output.

   |- A: Generate Ada source code.

      |- S: Implement state machine transform with software array lookup.

      |- B: Implement state machine transform with boolean logic equations.

         |- Document logic reduction ?

...   |- Q: Quit from this option.

...   |- ?: Help for this option.

   |- C: Generate C source code.

      |- S: Implement state machine transform with software array lookup.

      |- B: Implement state machine transform with boolean logic equations.

         |- Document reduction ?

...   |- Q: Quit from this option.

...   |- ?: Help for this option.

   |- P: Generate Pascal source code.

      |- S: Implement state machine transform with software array lookup.

      |- B: Implement state machine transform with boolean logic equations.

         |- Document reduction ?

...   |- Q: Quit from this option.

...   |- ?: Help for this option.

   |- S: Generate PALASM source code.

   |- ?: Boolean help.

|- D: Search for dead or hanging states.

|- T: Test the state machine that has been specified.

   |- Vector file option. (on entering option)

   |- Trace file option. (on entering option)

   |- A: Get next state by name and move to that state.

   |- C: Change the input vector.

   |- M: Move to the state entered.

   |- S: Get next state by selection and move to that state.

   |- Q: Quit the test option.

   |- ?: Help for the test option.

|- P: Get the probability of failure.

   |- Y: Option to load an existing probability specification file.

   |- P: Component probability of success entered directly.

   |- M: Component probability of success entered by MTBF.

   |- Y: Option to save this probability specification file.

|- W: Find the worst case execution time for state machine specified.

   |- A: Enter beginning and ending states by name.

   |- N: Enter beginning and ending states by number.

   |- S: Enter beginning and ending states by selection.

   |- Q: Quit the worst case execution time option.

   |- ?: Get Worst Case Execution Time help.

|- ? Help for the main menu.

|- Q: Quit the Logic Design Tool.

(63 Options)

4.1 Main menu.

LDT runs one of 13 options from the Main Menu: 

1) A tutorial on state machines and combinational Maps, 

2) Operator entry/edit of state machine specification, 

3) State machine simulator/test, 

4) Specification file load, 

5) Execution time calculation, 

6) Reliability computation, 

7) Search for dead or hanging states, 

8) Quit the design tool, 

9) Specification file save, 

10) Generate implementation source, 

11) Name input and output variables, 

12) Enter note for this logic specification, 

13) Edit an existing file specification that has been read in from a file or entered directly by the operator.

At the main menu, the operator is first asked if the specification of the state machine is to come from the keyboard or from a specification file.  If specification of the machine is to come from a file, a file name is requested, the file is read, and the state machine is built according to the inputs stored in that file.  The particular machine can then be tested, modified or saved.  If specification is to come from the keyboard, the operator is asked to enter the number of input bits in each bit field, number of outputs, number of valid states, number and size of each bit field and whether next states are restricted to adjacent states, or next states can be any one of the valid states. 

After the initial state machine is specified through file specification or operator input, the state machine can be modified by moving to the State Map and then to the underlying Transition Map.  This move is accomplished by entering 'e' for reaching the State Map and 't' to reach the transition map.  

If the operator has returned to the main menu after reaching the State Map, the operator may test the state machine ('T' or 't'), request a Boolean equivalent equation that will implement the state machine ('B' or 'b'), search for dead end or hanging states ('D' or 'd'), rename or edit the names of the input and output bits ('I' or 'i'), or quit out of the tool ('Q' or 'q').  

The main menu help is shown below:

         >>>> Main Menu Help <<<< 

         The Main Menu is used to select the State Machine Tool option that

           the operator desires. 

       Char  Option

       ====  ====== 

       g,G   Generate output files needed to implement SM in SW or HW.

       f,F   Load a file that implements the state machine. 

       d,D   Search for dead (no transitions from) 

        or hanging (no transitions to) states. 

       e,E   Edit file specification by returning to State Map. 

       i,I   Name inputs and outputs. 

       l,L   Run interactive state machine and Logic Design Tool 




tutorial. 

       n,N   Enter a note for this logic specification.

       o,O   Get a new specification via operator entry. 

       s,S   Save state machine specifications to a file. 

       q,Q   Quit the Logic Design Tool and return to operating system. 

       p,P   Calculate probability of failure. 

       t,T   Test state machine as presently specified. 

       w,W   Find worst case transition time between two states. 

       ?     Help. 




4.2 State Machine Specification.

If the machine is to be implemented in hardware and race conditions are to be avoided, next states can be restricted to adjacent states only.  Parameters entered by the operator are: names and number of inputs, names and number of input bit fields, names and number of outputs, and number of valid states.  Next states for each present state and combination of inputs can be specified by assigned number or name. 

4.2.1 State or Combination Map.

LDT displays inputs, present states, next states and outputs in a graphical combination map format.  A combination map is a visual plot of a binary or Boolean equation.  The map displays the binary result of the equation for all possible combinations of inputs. 

Using combination maps, the LDT allows the designer to specify a state machine's response under all possible conditions.  The designer does this by entering certain parameters, the sequence of states, their conditions for transition, and the outputs for each state and input combination.  In order to reduce human error, invalid entries are disallowed, but the operator is notified of the error and asked for a new, valid entry.

On the State Map is displayed the indexes that define the present state where the cursor is located.  As the cursor is moved to each state, the map displays the value of the present state indexes that define that state.  For that state, the indexes will be either zero (low, false, not connected, not asserted, etc.) as indicated by a non highlighted word 'IndexN' (where N is the index number) or one (high, true, connected, asserted, etc.) as indicated by  highlighted word 'IndexN'.  The index name spans the area, which is two rows or two columns on the combination map, where all states will have that index set to one.  The operator may also name the state where the cursor is located by pressing 'N' or 'n'.  

From this State Map, the operator may return to the main menu by hitting 'Q' or 'q', or may go to the Transition Map.  If next states are adjacent (where the next state can only be defined by a change in one of the index values of the present state), then the Transition Map may be displayed by hitting ctrl left arrow, ctrl right arrow, ctrl home, or ctrl end.  ctrl left arrow indicates that the transition will be from the present state, again indicated by the cursor position, to the state on the left.  ctrl right arrow indicates that the transition will be to the state on the right.  Similarly, ctrl up is up, ctrl dn is down, ctrl home is to the four by four map to the left and ctrl end is to the 4X4 map to the right in the case where there are more than 16 states and two 4X4 maps are displayed.  

If next states are not adjacent, the Transition Map may be displayed by hitting 'G' or 'g'.  

Output bits are also displayed for that state where the cursor is placed.  A set of outputs of the size initially specified by the operator or read from the specification file exists for each state.  Each output bit's initial value for all states is zero.  The output bit values may be edited by moving the cursor to the desired state, then hitting the 'O' or 'o' key, at which point the operator will be asked to enter the value (one or zero) of each output (given by name and number of the output) for that state.

The state map menu follows:

          ****  State Map Menu Help **** 

       The State Map indicates the available states from which to choose

          and their outputs.  From the Next State Map, the operator may "push"

          down to the underlying Transition map.  Within the Transition map the

          operator can then specify the allowable state to which the machine 



will transition when the given combination of inputs are present. 

       Left arrow: Move cursor to state to the left of this state. 

         If at last cell on left, move to first cell on right in this row.

       Right arrow: Move cursor to state to the right of this state. 

         If at last cell on right, move to first cell on left in this row. 

       Down arrow: Move cursor to state just below this state. 

         If at last cell on bottom, move to first cell on top in this column. 

       Up arrow: Move cursor to state to the below this state. 

         If at last cell on top, move to first cell on bottom in this column. 

         End = Over: Move to the other 4X4 Next State Map. 

         Home = Back: Move to the other 4X4 Next State Map. 

         n,N:  Name this state. 

         q,Q:  Quit edit of next state map and return to main menu. 

         ?:    Help 

         o,O:  Set output bits for this state. 

         g,G:  Go to transition map. 

         Cntrl left arrow : Go to transition map for state to the left of this 




state.

         Cntrl right arrow : Go to transition map for state to the right of this 




state.

         Cntrl PgUp : Go to transition map for the state above this state.

         Cntrl PgDn : Go to transition map for the state below this state.

         Cntrl Home : Go to transition map for the adjacent state in the other 






4X4 map.

         Cntrl End : Go to transition map for the adjacent state in the other 






4X4 map

If the number of states is equal to 0, because LDT is used to specify combinational logic rather than a state machine, the following help menu will be shown.

        ~~~~ Combination Map Menu Help ~~~~ 

     The Combination Map is used to specify a desired output for

     each combination of inputs.  The desired outputs are entered by 

     selecting "o" and then entering each output bit value for  

     that combination.  The value of the combined outputs are displayed

     on the map in each cell associated with that combination.

     1 to Maximum number of states:  Numeric entry specifying next state.

     a,A:  Specify next state by matching the name entered by the operator.

     s,S:  Select the desired next state by scanning through state name list.

     t,T:  Enter the transition time for this combination of inputs.

     n,N:  Access the note attached to this state.

     y,Y:  For this combination of inputs, transition to the next state that was

           pointed to in the State map with the j, k, i, m, h or l keys.

           This state will be adjacent (only one bit change is needed to reach 




that

           state) to the present state where the cursor lies in the State map.

           n,N:  For this combination of inputs, stay in this present state.

           o,O:  Specify outputs for this combination of inputs.

             ?:  Help.

           q,Q:  Quit and return to Next State map.

4.2.2 Intermediate Map.

The intermediate map will appear when the number of inputs is greater than 6, since on screen cannot display more than 6 variables.

The Intermediate map menu follows:

(r)INCLUDE c:\tp\INTER_1.HLP¯

(r)INCLUDE c:\tp\INTER_2.HLP¯

(r)INCLUDE c:\tp\INTER_3.HLP¯

4.2.3 Transition Map.

The Transition Map is a level below the state map for each state.  It shows all combinations of transitions from that state.  The Transition Map is reached from the state map by entering 't' from the state map menu.

Within the Transition Map, a combination map representation is given of the initial state machine of the specified size with next states defaulted to present states.  It lists all present states and their outputs, and allows the operator to choose the present state from which he will then specify valid transitions (in the underlying Transition Map) to next states.  By moving the cursor to the desired present state, pushing to the Transition Map and specifying the next state for each input bit combination (again, composed of the present state and the combination of inputs necessary to transition to that next state), the operator may set up the desired state machine. 

If the specifications have already been entered by the operator, all next states will be defaulted to their present states and all input names, output names and state names will default to 'InN', 'OutN', and 'StateN', respectively, where N is the number of the input, output, or state.  The cursor is moved to the desired state by the up, down, left or right arrow keys.  If the State Map contains more than 16 states, the cursor can be moved to one of the two four by four (16) cell maps by hitting the home or end keys.  

4.2.3.1 Next State Entry.

The Transition Map displays a cell for each combination of inputs for this present state.  By placing the desired next state in that cell, the operator chooses the state that will become the next state if the machine is presently in the state where the cursor was located in the State Map (present state) and that combination of inputs is present on the inputs to the state machine at the time of the next clock.  

If all states are adjacent, the choices are 'y' yes, 'n' no or 'x' don't care.  If 'y', the next state will be the state in the direction indicated in the State Map previous to display of the Transition Map.  This desired next state would have to have been indicated by placing the cursor and the desired input combination using the keys left arrow, right arrow, up arrow, down arrow, Home (to move to the other 4X4 map) or End (to move back from the other 4X4 map) while in the State Map.  If the selection is 'n', the next state will be the present state, which is the state where the cursor was located in the State Map before display of the Transition Map.  If the selection is 'x', a don't care is selected in place of a particular next state, and its use can be used to reduce the number of terms in the final Boolean equation output.

If states are not adjacent, the operator may enter into each input combination cell one of the valid states.  The states may be chosen by name match ('a'), scrolling through the list of valid state names ('s'), or entry of the corresponding state number using the numeric keys.  If an error occurs while entering the state number or the state number is not valid, the operator will be prompted and asked to reenter the state number.

A cell exists for all combinations of input bits and each combination of the lowest level cell must specify a next state.  Inputs to a state machine are composed of the present state and the input bits.  

Input bits are in turn composed of each bit field and its corresponding input bits.  Each input bit field is displayed by a combination map, and each cell of the combinational Map can be expanded to display the next bit field until all input bits are defined.  Thus, the operator may also move into other bit fields that are sub fields of the top level field.  Operator entry is restricted to valid responses only, in order to reduce human error. 

4.2.3.2 Boolean Equivalent Display of Transition Map.

It is possible to show all specified conditions for transition to the specified states to which this present state transitions by entering 'B' or 'b' while in the transition map.  The screen will be cleared and a boolean equation will be shown indicating the input conditions necessary for a transition for each state to which this state does transition.

4.2.3.3 Combination of Input Entry Into Transition Map.

Transitions may be specified by entry of a boolean combination of inputs.  This is done by selecting the 'm' option (this option may not be shown on the transition map menu).  Thereafter, the operator will be prompted for the state to which the desired transition is to occur, then the combinations of inputs necessary for that transition. Don't cares of the inputs are specified by entering an 'x'.  All previous values of next states for those combinations of inputs will be overwritten.

(TBI) A default setting will be available where the operator may specify to which next states the Transition Map will be initialized.  Some options will be: State 0, a specified next state, a copy of another already specified Transition Map, all Don't Cares or this present state.

(TBI) In order to reduce the size of the Transition Map, the operator will be able to indicate those inputs that have no bearing on any transitions from this present state.  Thus the Transition map will only show those input combinations which do affect the transitions.  These unused inputs will be able to be turned on or off, and will be recorded for the nest time the Transition Map is called up.

The transition map help called from the transition map menu is given below.  The page Transition map is shown if the logic is

sequential (Number of states > 0) The page Combination map is shown if the logic is combinational. (Number states = 0).

(r)INCLUDE c:\tp\TRANSIT1.HLP¯

(r)INCLUDE c:\tp\TRANSIT2.HLP¯

(r)INCLUDE c:\tp\TRANSIT3.HLP¯

(r)INCLUDE c:\tp\TRANSIT4.HLP¯

(r)INCLUDE c:\tp\TRANSIT5.HLP¯

(r)INCLUDE c:\tp\TRANSIT6.HLP¯

(r)INCLUDE c:\tp\TRANSIT7.HLP¯

4.2.4 State Note.

While in the transition map, the user has the option of attaching a note to the state that the transition map represents. This note will be automatically written with the source code as a comment to indicate in text the rationale for the transitions specified. 

The state note help follows:

(r)INCLUDE c:\tp\NOTE_TRA.HLP¯

4.3 State Machine Test.

4.3.1 Interactive Simulator.

An interactive simulator is included which tests the operation of the state machine in a single step manner, again in the combination (Karnaugh) map format. After entry by reading a file or keyboard entry by the operator, the state machine may be tested by simulating inputs presented to the machine and the clocking of the state machine in steps commanded by the operator. Inputs are changed by entering 'c', then the desired set of inputs.  The state machine is clocked with those inputs present by hitting the 'Enter' key.

The simulator may be tested by a set of input vectors and expected output vectors.  If, upon entry to the test option from the main menu, the operator will be asked if he desires input to come from a test vector.  If the operator responds 'y', the operator will be asked for the name of a file containing the input vectors and the expected output vectors.  At that point, the state machine will be presented the first vector, clocked, and the next state from the state machine will be compared to the expected next state and output from the vector file.  If, during test, the output vectors do not agree, the operator will be notified and asked whether to continue or to abort the test and return to manual.  If all output vectors agree, the operator will be notified and the tool will return the manual test.  

4.3.2 Test for Dead or Hanging States.

The machine can be tested for 'dead' states (states that have no next states specified), and 'hanging' states (states where no previous state and combination of inputs will transition to that hanging state).  This option is entered form the main menu ('d' or 'D').  

(TBI) LDT can show all 'no decision' states, where all transitions are to the same state.

(TBI) LDT can identify a grouping of states that can be collapsed into a substate via the exhaustive search used in the search for worst case path.

4.3.3 Computing Execution Times.

Another option of the state machine test is the ability to estimate the latency or execution time between any two states.  This can be done in two ways: 

1) the worst case sequence of states between two operator specified beginning and ending states found while in the Worst Case Execution time option. The worst Case Execution time option is entered form the Main Menu by entering "w", and  

2) through a user specified sequence of states entered while in the interactive simulator.

4.3.4 Generation of input test vectors.

Test vectors can be generated with a given input sequence, expected next state and expected output.  (TBI) Test vector files that are generated can be written to a PALASM file for verifying the programming of array logic devices. 

4.3.5 Output of Timing Diagrams.

For a set of test vectors, a timing diagram file, written with printable characters, is produced which indicates the logic levels of the outputs and the time for each level change, for the sequence of state changes.  This timing diagram can be written to a file in ASCII text format such that it can be printed with any ASCII compatible printer. The time lines will be scrolled down the page and continue to the next pages until completed. The time scale and timeline names are marked and scaled according to the smallest state transition time.  Longer runs of time lines are broken by "cut marks" such as ---SS---, at the option of the operator, but the length of the time line will be marked.

4.3.3.1 Worst Case Execution Time.

  Help for Worst case execution time follows:

(r)INCLUDE c:\tp\TIME_LIN.HLP¯

(r)INCLUDE c:\tp\TIME_LI1.HLP¯

(r)INCLUDE c:\tp\TIME_LI2.HLP¯

The LDT can estimate the worst case execution time between any series of state transitions.  After the operator has entered the time between each state transition, the operator can command an exhaustive search for all possible transition paths between the user specified begin and end states. The path that results in the worst execution time can then be selected.  Since some paths may loop among the same states multiple times before reaching the final state, the operator is asked for a limit to the number of times any single state may be "visited" or entered. also, since the end state may never be reached, the operator is asked for the maximum number of transitions to search before reaching the end state.

The execution time for any chosen sequence of states can also be computed by entering the state machine test mode, turning on the accumulated time display, and sequencing through the desired path.  The accumulated execution time for that sequence will be displayed after each transition.

4.3.3.2 Execution Time of a Transition Sequence.

The execution time is computed while in the state machine test option. Execution time is accumulated by toggling the time option, then stepping through state sequence of interest.

4.4 Generate Implementation Source.

Under this option, the operator will be asked for the means by which the state machine's transform, which takes inputs and present state bits as inputs, and produces the state machine's next state. This transform can be implemented with boolean logic equations composed of several 'anded' minterms 'ored' together for each next state bit equation, or a software array, where the next state is a location in a table found by its indexes, where the indexes are made of the present state bits

and the inputs.

If the machine is to be implemented in software, the operator may generate a FORTRAN (TBI), C, 8088 assembly (TBI), Pascal or Ada procedure which is either 1) a Boolean equation implementation of the machine, or 2) a software array implementation of the machine.  Assembly source code includes only simple loads, stores, bit tests, ect. that are common to most assembly languages. Assembly language code is optimized for speed and keeps operations local to the processor (no memory accesses) wherever possible. High level source code includes headers and description templates consistent with MIL-STD-2167A.

(TBI) If the machine is to be implemented in hardware, the operator may choose to output a file and wiring charts in a format compatible with a number of programmable logic devices (PALASM), discrete logic devices or a relay implementation. 

(TBT) The operator may choose to include in the source code which will allow the actual execution time of the state machine or combinational logic to be measured.

(TBI) In order to enable further reduction of the size of a boolean equation implemented logic, and to create code that is invariant to changes in the transform to be implemented, an option will be available to create code that will execute boolean equations based upon an input table.  The table itself will specify the boolean equations, but the code reading and executing the file will be invariant, or will not change with differing transforms.  The invariant code will read from the file the number of equations, the number of inputs, the number of minterms and the number of variables in each minterm. Then each minterm will indicate those variables.  Output from the boolean equation will be based on the present value of the inputs.  The table itself can be reduced by packing the values into a record of fields.  Header information in the file will tell the invariant program the format of the file to be read and the encoding of the equations.  This option will reduce memory size at the cost of execution speed. 

The Generate Implementation Source help menu follows:

(r)INCLUDE c:\tp\GENERATE.HLP¯

The implementation menu help follows:

(r)INCLUDE c:\tp\GB_IMPLE.HLP¯

4.5 Saving a State Machine Specification.

After testing, modifications can be made by returning to the State Map editor (option 'e' of the main menu).  When the operator is satisfied with the operation of the machine as tested in the simulator, the LDT can output files that will automate implementation in either hardware or software. 

When the Generate Implementation Source option and the Save Specification File is chosen, the following files are generated:

FileName.ADA : Ada source for the Ada procedure which calls the state machine and provides a place holder for the processes that will be activated within each state.

FileName.BOL : This is a storage file for boolean equivalent transitions between states.  This is needed for source code commenting.

FileName.EXE : This is an executable version of the logic that must have been generated by a compiler for that source.

FileName.NOT : Notes that were attached to each state while in the transition map for that state. These notes are included when source code is produced in 

FileName.ADA or FileName.PAS.

FileName.PAL : PALASM source code used to burn programmable array logic.

FileName.PAS : Pascal source code that calls the unit which implements the state machine and provides a place holder for the processes that will be activate within each state.

FileName.RPT : A report file produced in the boolean equation implementation option of the generate source option during reduction of boolean logic equations.  It shows all decisions to reduce logic for later verification. 

FileName.SPC : Specification file that configures the number of inputs, outputs states, and the output for each combination of input of the state machine or combinational logic transform.

FileName.STR : A string file for containing notes.

FileName.TIM : Execution times for each transition between states.

FileName.TFM : This is the transform file that specifies its output for each combination of inputs.  It is an input to software array implemented logic.

FileName.TXT : Text file containing the names of all inputs, outputs and states.

FileName.VCT : Input vector file used during state machine test.  Actually, this file could have any name, but this is an example of a naming convention that could be used for this type of file.

FileName_package.ADA : The package specification and body of the Ada source code produced in Generate Implementation Source. (TBI) The specification and body will be separated. The file name on an IBM PC will be truncated to eight characters. Since only seven characters are allowed for a state machine name, the package name may be distinguished from the procedure file name by the eighth letter of the package name, which will be the underscore character '_'.

FileName_unit.PAS : The Pascal unit (similar to Ada specification and body) that establishes the interface to and implementation of the state machine or combinational logic. The file name on an IBM PC will be truncated to eight characters. Since only seven characters are allowed for a state machine name, the unit name may be distinguished from the program name by the eighth letter of the unit name, which will be the underscore character '_'.

FileName.C : C version of calling program.

FileName_body.C : C version of logic (state machine or combinatorial logic).

4.6 Loading a State Machine Specification.

At the Main Menu, select 'f' and enter the name of the file. A list of existing files will be displayed.

4.7 Computing Worst Case Execution Time.

While in the next state transition map, the time of execution between entry into the present state for that

transition map, and the combination of inputs that would cause the transition to the indicated next state, can be entered by the operator.  This is done by moving the cursor to the desired input combination, pressing 't', and entering the transition time.  After the transition time is entered for all combinations, the worst case transition time can be found by returning to the main menu and hitting 'w'.  The operator will be asked to enter the beginning state number, the ending state number and the maximum number of transitions to search.  An exhaustive search will then be made down all branches of the transition tree until 1) the next state is the present state, 2) the next state is a state already passed through, 3) the next state is the ending state, or 4) the number of transitions is equal to or greater than the maximum number of transitions specified by the operator.  At this point the worst case execution time is displayed along with 1) the sequence of state transitions, 2) the input combination for each transition in that sequence and 3) the execution time for that transition.  

The execution time for any random sequence of states can also be computed by entering the state machine test mode, turning on the accumulated time display, and sequencing through the desired path.  The accumulated time display can be turned on by entering 't' from the state machine test menu.  The accumulated execution time for that sequence will be displayed after each transition.

4.7 Computing Probability of System Success. (TBT)

       The probability of success help menu follows:

     
**** Computing Probability of System Success ****


 LDT is able to calculate the probability of success (or failure)    


 of a system if given a description of the system and its components


 The system can consist of separate components with differing mean time

      between failures.  The description must indicate those combinations of

      healthy  and failed components that will result in success of the total

      system. This aspect of the LDT can be used in evaluating redundancy

      management schemes for fault tolerant systems. The state machine design

      LDT is useful in evaluating tradeoffs in system architectures and

      their effect upon system reliability.

      The probability of success of a system is the sum of the probabilities

      that any combination of healthy and failed components, which result in

      system success, can occur.  The probability that any combination will

      occur is in the product of the probability of success of the healthy

      components for that combination, and the probability of failure of the

      failed components for that combination.  The LDT can be used to compute

      system probability of success if the health of the components (failed

      or heathy) are given as inputs to the state machine.  Then the

      combinations of failed and healthy components that result in success

      are identified on the transition diagram.  By returning to the main                
   menu and entering "r", the probability of failure of the entire system

      will be computed and displayed.  Component probability of success can

      be specified by direct entry or by entering the components mean time

      between failure and the time of operation.

       Valid Compute Reliability Commands:

       p,P:  Enter component reliability by its probability of success. 

       m,M:  Enter component reliability by mean time between failure (MTBF) 

               and time of operation.  This method will compute the 






probability of success from MTBF and time. 

       ?:    Help 

4.8 Tutorials

A tutorial, which instructs the operator in the theory and operation of state machines, combination map logic reduction, Boolean logic and the LDT itself is provided.  These tutorials employ programmed learning, meaning the tutorial is divided into sections with an interactive exercise at the end.  If the exercise is completed correctly, the tutorial jumps ahead to a section covering the next concept.  If the tutorial is not completed or is completed incorrectly, the tutorial branches to a more detailed explanation of the concept covered by that section.  Thus, the tutorials are geared to operators of varying degrees of experience and ability.

4.9 Change in State Machine Behavior Without Recompilation. (TBI)

A significant amount of software development time is spent recompiling.  Because a state machine can be implemented by a software array or table lookup, it is possible to implement a memory resident LDT which allows changing the transitions between states without recompilation. This modification of the state machine can be accomplished by just changing the contents of the software array during run time. This feature could speed development time and can relax compiler speed requirements.

4.10 Assigning Names to Input and Output Variables.

If the 'i' option is selected in the main menu, then a name will be requested for each input and then each output.

(TBI) Under this option, a note can also be attached to the input and output names that can be called up under this option, and will be included in the header if a source file is generated.

4.11 Configuration file. (TBI)

4.11.1 Color palette. (TBI)

4.11.2 Outputs a Function of Inputs Also.

4.11.3 Default Next state. (TBI)

4.11.3.1 Default Next State = Present State.

4.11.3.2 Default Next State = 0.

4.11.3.3 Default Next State = A Single Next State.

4.11.3.4 Default Next State = Paste of Pattern Cut From Another State.

4.11.3.5 Default Next State = All Don't Cares.

6.0 Glossary.

Ambiguous - The two actions or conditions are specified for the same condition or action.

Combinational logic - A transform that generates outputs for cases of inputs.

Complete specification - All actions and conditions the system is to take are specified.

Fields - Slices of a set of consecutively numbered variables.

LDT - Logic Design Tool.

Sequential logic - A transform that generates outputs for cases of inputs and past states.

State map - A combination showing all possible states.

TBI - To Be Implemented. In work, planned for future, or being considered.

TBT - To be tested. Feature is implemented but not fully tested.  In most cases this is due to lack of a compiler to test source code generation.

Test vector - Input to the state test that is composed of two parts - a sequence of inputs and sequence of expected outputs.

Transition map - A combination map showing all possible transitions for a given state.  Each transition map cell relates to one combination of inputs.

       Proprietary                            Section 7  Design Principles

7.0 LDT Design Principles.

LDT was developed according to the following philosophy:

Documentation, tutorial:

1- An example will be coupled to each concept presented.

2- Tutorials are via programmed learning.

Code structure:

1- A test suite is maintained to verify operation under a wide set of conditions. This test suite is run before each version is released.

2- Kernel graphics and documentation targeted to least capable host processor. 

3- LDT is implemented with text, then graphics, but text is not dependent upon graphics, so code will still port to least capable processor.

4- Text_IO is moved to an interface package for easy portability.

User interface:

1- A single key entry is used wherever possible.

2- The user interface is everything, and generated code is the most important part of the user interface.

3- Deletions or overwrites occur only at the double assertion of the operator.

4- Operator is limited to only valid entries and prompted if an erroneous entry is attempted.

5- Every effort should be made to not make the operator wait. If operator must wait, an indication is displayed that machine is working on requested option.

6- Every menu has a help.

7- Operator can always escape or quit, and multiple escapes return the operator to the main menu, then stop, multiple quits exit the operator from the program.

8- What you see is what you get. 

9- If it's fun to use, it will be used, If it's not, it won't.

10- Ada code generated will comply with the SPC coding guidelines (reference 14).

8.0 LDT Use with Structured Analysis Methodologies.

LDT is a single mapping of inputs to outputs.  LDT is a proposed replacement for the multiple representations needed in Hatley-Pirbhai and Ward-Mellor (state transition diagram, state transition table, state event matrix, decision table, process activation table).  LDT combines event logic, state machine and action logic into a single format, eliminating ambiguities and reducing the chance of a disconnect between multiple CSPEC representations.  LDT has no event or action signals, only input and output control signals.

LDT can be used as a CSPEC in either Ward-Mellor or Hatley-Pirbhai methodology.  Issues such as process activation, process concurrency or control flow interpretation are outside its role as a CSPEC.  

LDT could be added to the F-22 S/SEE by linking into the stubs (software hooks) already provided by Teamwork.  F-22 team members familiar with Hatley-Pirbhai or Ward-Mellor should be able to use LDT in conjunction with Teamwork within several hours, since a tutorial, help menus and interactive debugger are provided. 

Use of LDT as an alternate CSPEC representation:

The following is an description of LDT used as a CSPEC in a Real Time System Analysis example.  This example, which contains three processes with one data store and one CSPEC, is shown in figures 8-1, 8-2 and 8-3.  The resulting Ada source code, implemented with boolean equations and processes called from the state machine, is shown in figure 8.4.  

Since A_Result flows into a data store accessed by C, and B generates a data flow directly into C, let's assume both A and B would need to be activated before C and that A and B can be activated concurrently.  If an error occurred and either A or B's processing was not successful, then C would not be activated and an error control flow from the CSPEC would be asserted.  Therefore, the inputs to the CSPEC are the status control flows from A and B which indicate whether or not the process was successful.  CSPEC outputs are the activations of processes A, B, C and the Error control flow to another DFD.  The number of states used is three: State#0 for A and B activated concurrently, State#1 for C activated if A and B processes are successfully completed, and State#2 when no processes are activated but the error control flow asserted if either A_Success or B_Success is not true.  Since the number of states must be a power of 2, there is one extra state, State#3.  This state could be a dead state, if the implementation must be very reliable, or could be designated a don't care, if the system must be small or fast at the expense of some safety.

LDT is a mapping of binary inputs to binary outputs.  According to the Hatley/Pirbhai book, page 68, the function of a CSPEC is to 1) activate processes on the CSPEC's DFD or 2) generate control flows.  We claim that LDT can replace a CSPEC without any other representations, as long as the CSPEC's input control flows are binary or can be encoded to binary (which in a digital implementation would have to occur anyway).  Also, each of LDT's outputs must either activate/deactivate a single process or assert/deassert a control flow output from that CSPEC.  LDT's function as a CSPEC would be to activate the correct combination or sequence of processes and assert the correct combination or sequence of control flows for a given state (Moore machine) or transition (Mealy machine).  

If an operator had already placed a CSPEC in the DFD, and he wanted to specify the operation of that CSPEC, he would select the CSPEC, then he would be asked to enter the type of representation desired (PAT, SEM, STD, LDT, etc.).  For this example, there is only one CSPEC, but if subsets of the processes are to be independently activated, then a different CSPEC should be specified for each independent subset.  If the operator selected LDT as the desired representation for this CSPEC, then the LDT program as it now exists would appear in a window and would ask which processes, from among those in the DFD database, are to be activated by this CSPEC.  A process activation could be represented by an output from LDT.  Any number of processes (outputs) on the DFD may be activated in any one state.  The number of control flows (also equivalent to LDT outputs) out of the CSPEC could be derived from the DFD database or could be entered at this point and later tested for consistency with the DFD.  The number of inputs, equal to the number of control flows into the CSPEC, and their name, would be known from the DFD database.  

LDT would also ask for the number of states. The number of states would be, at a minimum, the number of unique combinations of processes to be activated and control flows to be asserted at any one time.  Additional states may be needed to generate the correct sequence of those activations, but the number of states will not be less than the number of unique output combinations.  If the operator specified 0 for the number of states, the logic would be combinational.  If the operator specified a positive number greater than 1 for the number of states (1 state is not allowed), the logic would be sequential.  Naming of inputs and outputs should be automatically read from the DFD database in order to avoid the introduction of inconsistencies.  The operator would then specify the behavior of the logic.  For a Moore machine, each state would activate a combination of processes and control flows.  For a Mealy machine, outputs and activated processes are a function of the transition and therefore are defined by the present state and the input combination at the time the inputs are sampled.  A state in a Moore machine could possibly assert no outputs or activate no processes.  An application of no activations or assertions would be, for example, where it is desired to strobe an output with a deassert signal between two states that have that output asserted.  

CSPEC logic testing could be displayed just within LDT alone, where the operator recognizes which outputs are activations and which are control flow outputs.  CSPEC logic testing could also be displayed within the DFD, perhaps in another window, where the operator is asked for the control inputs, the operator selects the values of the control inputs to all of the CSPECs, and the processes and the control flows output from all the CSPECs are displayed, perhaps by various colors, as activated/deactivated (process) or asserted/deasserted (control flow).  Processes that are activated and have child processes controlled by CSPECs could be 'jumped into' at the option of the operator.  This would be similar to a 'step over' or 'step into' instruction in a software debugger.  The order that processes which are activated at the same time are 'stepped into' during test could be at the option of the operator, but the order should make no difference for testing that state.  Processes that are neither activated nor deactivated by the CSPEC, but are activated only by the reception of the data flows needed to perform the functions, could be 'jumped into' as a test option separate from the CSPEC testing. 

        Figure 8-3 Transition map for State#0.  

          (All other states are no-decision)

           A_Success

         \    0     1                

 B_Success \ _____ _____              

            |     |     |             

          0 |  2  |  2  |             

            |_____|_____|             

            |     |     |             

          1 |  2  |  1  |             

            |_____|_____|                                  

The following refers to a letter from the Software Productivity Consortium titled "Using Hatley/Pirbhai with ADARTS: Some Issues" dated 10 February 1992.  LDT may help solve some of the issues listed.  

RTSA issue 1 cites the SPC recommendation against using both combinational and sequential logic in the same CSPEC.  Hatley-Pirbhai views combinational logic to be a sequential state machine with no states.  This is how state machines are represented in LDT, so with LDT there is no need for two representations in the same CSPEC.  Since in LDT there is no event or action logic, the CSPEC would be either purely combinational or combinational with memory, which is a sequential state machine.

RTSA issue 2 describes the reason for recommending against time-continuous flows.  Perhaps the use of synchronous and asynchronous state machines would help solve the problem of time-continuous versus time-discrete control flows, as well as the case where it is possible to pass through several states simultaneously.

State machines are synchronous if transitions occur only upon a memory "clock" or input control signal sample time.  State machines are asynchronous if transitions can occur any time the combination of input control flows changes.  Asynchronous state machines can only be used with time-continuous input control flows, and if they are to be implemented in hardware, are restricted to adjacent state transitions, where the binary equivalent of the state identifier may only change by one bit value per transition.  However, the advantage of asynchronous machines is that they require no clock.

Synchronous state machines can be used with either time-continuous or time-discrete flows, but a clock is needed.  The clock time must be established, but the clock could be another control flow input to the CSPEC or could be defined as the time that the data flow diagram, with which the CSPEC is associated, is activated.  In other words, the clock would occur when the time-discrete signal flow is consumed by a CSPEC transformation.  The bad news is that the time at which the input control flows must be sampled (clocked) can not be established without some knowledge or assumptions about the implementation.  

If synchronous state machines are chosen, and are represented by a Moore machine, then states will persist for a non-zero time interval even if time-continuous control flows are input to the CSPEC.  However, the time that the states persist can be very small, depending on the clock period.

RTSA issue 4 deals with concurrent activities in primitive transformations.  If the purpose of a CSPEC is to 1) activate controllable processes and/or 2) produce other control flows, and if a CSPEC was to be implemented with a Moore state machine, then the minimum number of states needed for that state machine would be equal to the number of unique combinations of control flow combinations and process (transformation) activations that will occur during the entire operation of the system.  Any processes that are concurrent would be activated during the same state.  Any processes that are not concurrent would be activated during different states.  Activities that are concurrent in a transformation should be allowed since the transformation itself is activated only at the time the activities are concurrent.
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Section 10  Dedication

10.0 Dedication

This work is dedicated to my sweet wife Lini who took care of most other duties while I worked on this program.

11.0 User comments.

12.0 Limitations, host requirements. 

Easing the task of specification entry:

LDT is rigorous in that each combination of inputs must be considered for each state.  Entry of a large or complex specification may prove cumbersome.  Entry by boolean equation or cut and paste from another section may alleviate the pain.  Another method, which has not yet been implemented, but whose concept has been proven, is for each state, identify those inputs which are known to affect a transition to another state and display in the transition map only the combinations of those particular inputs.  This would reduce the number of combinations in the transition map displayed.  All other inputs would be considered dont care. This option will be included in the next software version.

Enabling a better view of state transitions:

LDT will handle the more general case of state machines due to its ability to display a larger set of states.  However, LDT is more difficult to use than a tool with a graphical display of a state transition diagram or N2 diagram.  This difficulty could be helped somewhat by providing the ability to show, in a state transition diagram or N2 diagram, the specification entered.  Of course, if the number of states contained in the specification is too large, the display will be unreadable, but for a state machines with less than 16 states, this option should help the operator visualize the operation.  

The state transition diagram could start as an arrangement of points in a circle spaced equidistant on the circle.  Lines between the points would represent transitions from the state to other states.  After the circle is presented, the operator would have the ability to rearrange the points (states) and route (rubber band) the transition lines, with additional vertices (corners) on the lines as desired.  If room is available, display of the conditions for transition may be added or not added.

It is difficult to avoid dealing with the combinational explosion when examining all states and combinations of transitions.  LDT's user interface, however, does allow the operator to manage the larger number of combinations in the following manner:

1- By  breaking up the display of inputs presented to the transform (Figure 1.2b of the manual) into a hierarchy of fields as mentioned above and described in Appendix A, rather than attempting to display the whole set of input and state identifier combinations on one display.

2- By being able to specify in the transition map, the next state transitions by conditions of inputs, rather than by individually entering a next state value into each transition map cell.  This trades off some rigor for ease of use, but its use is at the option of the operator to use it.  To see how this works, go to a transition map for any state, press 'm'. The option 'm' is not displayed in the menu (no room on the prompt line), but is explained in the help page for that menu.  After 'm' is pressed, LDT will ask for the next state (the state to which this state will transition) and then LDT will ask for the combination of inputs for that transition.  This will place in the transition map a minterm defined by the input condition values and/or don't cares entered.  The resulting conditions for all possible next states can also be shown in boolean equations by entering 'b' at the transition map menu.  For all states, the boolean equation composed of the input combination to cause that transition will be shown.  Where no transition to that state has been specified, a prompt will show such.  My description will probably make better sense if you just try it.

3- LDT also offers the option to reduce the size of the transition map display.  LDT has the ability to display, in any transition map for a particular present state, only those inputs which affect the transition to other states.  For example, if the state machine has six inputs, but for state#x only two of those inputs cause a transition to another state, only four (2**2) input combinations will be shown in that state's transition map.  All other inputs are set as don't cares for that state.   

LDT extends the number of inputs and states that can be managed in a specification, but the specification size is still subject to the combinational explosion of the number of states and inputs.  For example, in order to have a software array which specifies the actions of a state machine with 32 states and 7 inputs, requires 5 + 7 = 12 inputs which is 2**12 or 4096 combinations.  Combinational logic with 16 inputs would require 2**16 or 64K of memory.  

One possible means to reduce memory size needed is to encode portions of the logic specification that are not being changed into boolean equations rather than software arrays.  Using the SAFEMSL example, if the specification was implemented as an array of arrays, where the top level array corresponded to each state, and the next level array corresponded to the combinations of inputs for a particular state, then while that particular state was being changed by the operator, the other state's input arrays could be encoded not as software arrays residing in dynamic memory, but as boolean equations.  This would reduce the amount of memory needed for the specification. If another state specification was needed, that specification could be converted from Boolean to a software array.

Unneeded parts of the specification may also be sent to disk for storage until needed.




APPENDIX A   Underlying Method


This appendix contains an explanation of the underlying method used by LDT for expressing a transform of inputs (which may, in sequential logic, consist of external inputs and present state bits) and outputs (which may, in sequential logic, consist of external outputs and next state bits).  The explanation refers to FIG. 1 to 6.  This explanation uses the SAFEMSL example described above to illustrate the method.

FIG. 1 is a graphical illustration of an example using the method, for representing a transform relating a binary variable to a set of binary input variables. FIG. 2 is a flow chart illustrating, in accordance with the method, a sequence of steps to represent a transform relating a binary variable to a set of binary input variables. FIG. 3A is a flow chart expanding one of the steps of the flow chart of FIG. 2. FIG. 3B is a flow chart adding graphical display steps to the flow chart of FIG. 2. FIG. 4A is an example of a sequential state diagram. FIG. 4B is a next state map for the state diagram of FIG. 4A. FIG 5 is a graphical illustration of an example for representing one of the transforms associated with the state map of FIG. 4B.


As shown in FIG. 1, method is used for representing a transform (20) relating a binary output variable (x) to a set of binary input variables (22). The method is outlined in flow diagrams (100, 120, 130) and includes the steps of separating input variables into successive fields, defining field combination maps having cells representative of binary combination maps having cells representative of binary combinations of field variables, assigning field combination maps of successive fields to each preceding field cell and assigning binary values to field cell chains formed thereby.


In accordance with the present method, FIG. 1 graphically illustrates a method of representing a transform (function) relating a binary variable to a set of binary input variables, e.g. the transform 20 relating the variable x to input variables a, b, c, d, e, f, g, h and i.


The method separates transform input variables into successive fields, defines for each field a combination map having cells each representative of a binary combination of that field's variables, assigns a different field combination map of a successive field to each preceding field cell for all successive fields. This process links one cell of each preceding field with each last field cell to form a field cell chain associated with it. The method finally assigns binary values to all field cell chains in accordance with the transform.


When the method is used in LDT, visual displays (e.g. similar to the graphic illustration of FIG. 1) aid the design and analysis of combinational logic circuits and sequential state machines and enhance a user's understanding and control of logic transforms (especially those involving large numbers of variables). Use of the method also insures that all input variable binary combinations have been considered and that only one transform value has been assigned each of the combinations.


The following description will employ combinational logic and sequential state machine examples to illustrate some examples. It should be understood that the term "input variables" is generally used for referring to both input signals to a combinational circuit and to present flip-flop states in a sequential state machine, i.e. a binary variable, such as a circuit output signal or a flip-flop next state, can be expressed as a transform of a set of input variables which may include both circuit inputs and present flip-flop states.


Attention is now directed to the graphical details of FIG. 1 where the input variables 22 of the logic expression 20 have been separated (indicated by broken lines 23) into successive fields 22', 22" and 22"" by a set of successive planes 24' , 24" and 24"". In the first field (plane) 24' a first field combination map in the form of a Karnaugh map 28 is defined having cells each representative of one binary combination of the first field variables. For example, cell 30 represents a'b where a' = 0 or False and b = 1 or True. As typically done in Karnaugh maps, the binary variable (x) being expressed as a transform is shown in the upper left hand of the map 28.


In the successive 24" a successive field combination map is defined having cells each representative of one binary combination of the successive field variables (e.g. cell 36' represents the successive field combination maps is then assigned to each cell of the preceding (first) field 24'. For example, combination map 34 is assigned, as indicated by arrow 38, to cell 30 of field 24'.


This process of defining and assigning successive field combination maps is continued in each successive field and terminates, in this example, with the field 24"" where a last field combination map has been defined and a different one thereof assigned to each cell of the preceding field 24". For example, combination map 44' has been assigned, as indicated by arrow 45, to cell 36" of field 24"


This process thereby links one cell of each preceding field with each last field to form a field cell chain associated with that last field cell. For example, the field cell chain consisting of cell 48', 36" and 30 are linked by arrows (field combination map assignments) 45, 38 while the field cell chain consisting of cells 48", 36' and 30 are linked by arrows 49, 38. These chains respectively represent the binary combinations a'bc'd'ef'ghi and a'bc'def'ghi. Thus, the cells of each field cell chain represent one of the binary combinations of the input variables.


Therefore, in accordance with the transform being represented, a binary value with each last field cell chain. In the example illustrate in FIG. 1. this assignment is made by relating the binary value with each last field cell (specifically by placing the binary value within the cell).


As an illustrative example in FIG. 1 of this binary value designation process, a specific logic transform 50 has been represented by entries of binary ones in appropriate cells of the last field 24''' (e.g. a one in cell 48' specifies the variables x to be true for the input variable combination a'bc'd'ef'ghi.). In this example all other cells associated with field 42''' have been left blank or, to simplify the illustration, not shown to indicate a binary zero entry. It should be understood that these entries may include "don't care" situations where a designer may decide to enter a binary one or zero. Thus the binary value entered could be a binary one, a binary zero or an "x" indicating a design choice of either a one or a zero.


For clarity of illustration in FIG. 1, only those combination maps of fields 24', 24" and 24''' containing field cell chains assigned a binary one are shown in heavy outline and the cells associated with those field cell chains are cross hatched. Other combination maps are shown in light outline (or are not shown as in a field 24'''). It should be understood, however, that there are sixty four last field combination maps in field 24''', each cell of which is associated with a unique field cell chain.


Thus, a general transform may be represented by a method that can be extended indefinitely to any number of input variables. Although the method may be practiced in a variety of ways, it finds particular utility, especially when a large number of input variables are present with a computer programmed to perform the method steps. Accordingly, the flow chart 100 of FIG. 2 illustrates the basic steps of the method.


The flow chart 100 begins in the block 101 by inputting a transform relating a binary variable to a set of binary input variables. In task 102 the input variables are separated into successive fields. Subsequent task 104 defines a first field combination map having a different cell for each binary combination of first field variables. The loop 106 around test 108 defines a field combination map for a successive field (task 110) and assigns a different one thereof to each proceeding field cell (task 112). The loop 106 terminates with the transform of task 101, a binary value to each field cell chain formed by a last field cell and the proceeding field cells linked thereto by successive field assignments. As described above relative to FIG. 1, the method assigns these field cell chain binary values by relating a binary value with each last field cell.


FIG. 3a is a flow chart 120 illustrating particular program steps which may be used to realize task 112 of the flow chart 100. In this case, a different successive field combination map is created for each preceding field cell in task 123. Then a unique identifier (e.g a number) is assigned in task 124 to each of those preceding cells and is associated in task 126 with a different one of the successive field combination maps. Such identifiers facilitate linkage of successive field combination maps with preceding field cells and may be particularly useful in visualizing field relations between a large number of input variables when one practices the method on a digital computer. These identifiers could graphically be displayed as the numbered arrows (e.g. arrow 45) of FIG. 1.

FIG. 3b is a flow diagram 130 illustrating the method display steps that could be added to the flow diagram 100 of FIG. 2. In task 132 the first field combination map is displayed as a cell array in a simulated three dimensional plane. Task 134 displays each successive field combination map as an array in a similar plane arranged behind the first field plane and task 136 connects each successive field map to it's preceding field cell with an arrow. Finally, in task 138 the assigned field cell chain binary value is displayed in the associated last field cell.


If Karnaugh maps are used for the combination maps (as shown in FIG. 1) it may be advantageous to restrict the number of input variables assigned to each field so that the Karnaugh map of each field is easy to visualize (e.g., when displayed on a computer screen). Although the separation of variables into fields is generally arbitrary, one using this method may enhance the use of the method by grouping specific variables in one field (e.g. all input variables associated with a single source circuit, a single function of a circuit or all flip-flop output states in a sequential state machine).


The terms "combination map" and "cell" are specific terms respectively for any logic combination representation technique and elements thereof used to designate specific binary combinations.  Accordingly, the example illustrated in FIG. 1 specifically employs Karnaugh maps such as the map 30, the method generally teaches the use of any logic combination representation technique (e.g. truth tables, Quine-McCluskey method, variable entered maps).

This method aids design and analysis of combinatorial networks and sequential state machines. The cells of a field may represent the sequential states obtained with flip-flops. In that case field combination maps in the form of Karnaugh maps may contain more cells than states (since such maps always have 2**N cells where N is the number of variables).

For example, if A and B are flip-flops used to create 3 states in a state machine, a and b in the Karnaugh map 28 of FIG. 1 might indicate the last state output of each flip-flop A,B and the variable x would then be replaced by a symbol A+ indicating the next state output of flip-flop A. In this case the map 28 indicates one more state is available (cell) than is required. The method facilitates following all paths to or from this state to allow the user to make decisions thereabout (e.g. insure that all paths from such a state leads back to one of the three valid states). 

The method may be further illustrated with references to such a specific sequential state machine example.  The example will be termed the Safe Missile System (SAFEMSL).  This system is designed to control a missile launcher firing a strategic defensive nuclear device that, in order to avoid the inadvertent start of a nuclear war, should be fired only under the proper conditions and in the right sequence of events. In this system there are four input signals: FUEL indicating presence of FUEL, COMPTR indicating computer system READY, AIMED indicating missile guidance aimed at the target and BUTTON indicating a go button pushed by an operator. These inputs are respectively denoted by the input variables w, x, y and z.

There are also four states of the system: READY indicating the missile has been prepared for firing, AIM indicating the missile has acquired and locked onto target, FIRE indicating the missile has been fired and INVALID indicating that an incorrect sequence has occurred.

The four states are shown, each with an assigned reference number, in the state transition diagram 140 of FIG. 4A. In the Safe Missile System, the transitions 142 between states 144, in response to input signal combinations, are to occur as follows. Transition 1 (from state 0 to state 1) will occur when FUEL and COMPTR are true and AIMED and BUTTON are false. Transition 2 (from state 1 to state 3) will occur when FUEL, COMPTR, AIMED and BUTTON are true. Transition 3 (from state 0 to state 2) will occur when AIMED or BUTTON are true. Transition 4 (from state 1 to state 2) will occur when FUEL or COMPTR are false or AIMED is false and BUTTON is true. Transition 5 (from state 3 to state 3) will occur when FUEL or COMPTR or AIMED or BUTTON is false. Transition 6 (from state 0 to state 0) will occur when AIMED or BUTTON are false and FUEL and COMPTR are not both true. Transition 7 (from state 1 to state 1) will occur when FUEL and COMPTR are true and BUTTON is false. Transition 8 (from state 3 to state 3) will occur when FUEL, COMPTR, AIMED and BUTTON are true. State 2 is a dead state, i.e. there are no transitions from state 2. The system has one output FIRE which is true when the system is in state FIRE and false for all other states.

Essentially the system stays in the ready state until FUEL and COMPTR are true which sends it to the aimed state. If AIMED or BUTTON prematurely go true in the ready state, the system goes to INVALID state. From AIMED it goes to the INVALID state if FUEL or COMPTR go false, also goes to the INVALID state if BUTTON prematurely true and goes to the FIRE state when AIMED and BUTTON goes prematurely true and goes to the FIRE state when AIMED and BUTTON go true. If any of the inputs go false in the FIRE state the system goes to the INVALID state.

Since there are four sequential states to be obtained, two flip-flops will be required (four states can be described by to binary state variables; 2**2 = 4) to implement this system. If the output of these flip-flops are denoted A and B, the binary combinations thereof can be assigned to the sequential states as shown in the next state map of FIG. 4B which indicates next states resulting from input and flip-flop present state combinations. For example, in the combination map 160, the binary combination A'B has been assigned to state 2.

The state transition described above relative to the state transition diagram of FIG. 4A can then be entered in combination maps 162, 164, 166 and 168 of the next state map of FIG. 4B. For example, combination map 164 indicates that state 3 of combination map 160 transition to state 3 for w, x, y and z all true and to state 2 for all other input combinations of w, x, y and z.

There are three transforms that describe the circuits to realize the Safe Missile System. These respectively express the system output FIRE and the next states A+ and B+ on the flip-flops A,B in terms of the four input signals w, x, y and z and the two flip-flop present states A and B. For this example, the transform for the next flip-flop state A+ will be represented using an example illustrating the present method.

It is seen, from the assignment of states in combination map 160, that the next output state A+ of the flip-flop A will be true when the system goes to state 1 or 3. Looking at the response of system sequential states, in response to flip-flop present states A,B and input signals w, x, y and z in FIG. 4B for the states 1 and 3, leads to the transform:



A+ = A'B'wxy'z'+ AB'(wxz'+ wxyz) + ABwxyz.

In this example, it has been assumed that the flip-flops A and B are D flip-flops so that the output follows the input. Thus the transform above represents both the flip-flop A's next state output and input. If other flip-flop structures (e.g. JK flip-flops) were used, the transform function would need to be applied to realize a transform relating the input of the flip-flops to the input variables and present flip-flop states. Such a transform could then be used to design a circuit that would realize the Safe Missile System.

A method, in accordance with the present method, of representing the sequential state transform for A+ is graphically illustrated in FIG. 5 where the general transform 180 has been separated into fields as shown by the broken line 182. A combination map 184 is defined having cells representing all binary combinations of the second field 190  of variables(shown graphically as a second plane). A different one of the combination maps 188 is assigned to each preceding field cell. For example, combination map 188' is assigned to the cell representing the first field variable combination A'B' as indicated by the arrow 189.

This process thereby links one cell of the preceding field with each last field cell to form an associated field cell chain. The cells of this chain one binary combination of the input variables.

Finally, a one, zero or "don't care" is assigned to each 

last field cell chain in accordance with the transform 191 for A+. In this example, the assignment is made by relating the binary value with the last field cell. For clarity if illustration, only binary ones have been entered in the last field cells of FIG. 5. All other cells are understood to be related with a binary zero.

FIG A-1 to A-6
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APPENDIX B   Logic Reduction



Boolean Logic Reduction Algorithm

Reduction occurs according to the following map reading algorithm:

LDT finds a reduced-literal expression from a combinational map which may include seldom used variables and don't care entries. The map dimension is n, and k is a counting integer.

1) Consider all seldom used variables as 0's and set k = 0.

2) Encircle all the uncircled 1's which can be included in only one k-subcube and cannot be included in any (k+1)-subcubes. These are the essential terms. Encircle the remaining 1's which cannot be included in a (k+1)-subcube. Use don't cares where helpful.

3) Set k = k + 1. If all 1's are circled, then go to step 4; otherwise, go to M2.

4) Set one uncircled seldom used variable to 1 and consider all other seldom used variables as 0 and all other circled 1's as don't cares. If all seldom used variables are circled, go to step 5; otherwise, set k = 0 and go to step 2.

5) Read each subcube, including any circled seldom used variables in the expression.

6) For maps with no seldom used variables, read the 0's and compare with step 5.
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